Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/carpedm20/pixel-rnn-tensorflow
in progress
https://github.com/carpedm20/pixel-rnn-tensorflow
generative-model pixel-rnn pixelcnn tensorflow
Last synced: about 3 hours ago
JSON representation
in progress
- Host: GitHub
- URL: https://github.com/carpedm20/pixel-rnn-tensorflow
- Owner: carpedm20
- License: mit
- Created: 2016-07-12T19:46:49.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-06-02T02:55:12.000Z (over 5 years ago)
- Last Synced: 2025-01-06T01:07:42.689Z (7 days ago)
- Topics: generative-model, pixel-rnn, pixelcnn, tensorflow
- Language: Python
- Homepage:
- Size: 1.61 MB
- Stars: 496
- Watchers: 26
- Forks: 129
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PixelCNN & PixelRNN in TensorFlow
TensorFlow implementation of [Pixel Recurrent Neural Networks](https://arxiv.org/abs/1601.06759). This implementation contains:
![model](./assets/model.png)
1. PixelCNN
- Masked Convolution (A, B)
2. PixelRNN
- Row LSTM (in progress)
- Diagonal BiLSTM (skew, unskew)
- Residual Connections
- Multi-Scale PixelRNN (in progress)
3. Datasets
- MNIST
- cifar10 (in progress)
- ImageNet (in progress)## Requirements
- Python 2.7
- [Scipy](https://www.scipy.org/)
- [TensorFlow](https://www.tensorflow.org/) 0.9+## Usage
First, install prerequisites with:
$ pip install tqdm gym[all]
To train a `pixel_rnn` model with `mnist` data (slow iteration, fast convergence):
$ python main.py --data=mnist --model=pixel_rnn
To train a `pixel_cnn` model with `mnist` data (fast iteration, slow convergence):
$ python main.py --data=mnist --model=pixel_cnn --hidden_dims=64 --recurrent_length=2 --out_hidden_dims=64
To generate images with trained model:
$ python main.py --data=mnist --model=pixel_rnn --is_train=False
## Samples
Samples generated with `pixel_cnn` after 50 epochs.
![generation_2016_08_01_16_40_28.jpg](./assets/generation_2016_08_01_16_40_28.jpg)
## Training details
Below results uses two different parameters
[1] `--hidden_dims=16 --recurrent_length=7 --out_hidden_dims=32`
[2] `--hidden_dims=64 --recurrent_length=2 --out_hidden_dims=64`Training results of `pixel_rnn` with \[1\] (yellow) and \[2\] (green) with `epoch` as x-axis:
![pixel_rnn](./assets/pixel_rnn.png)
Training results of `pixel_cnn` with \[1\] (orange) and \[2\] (purple) with `epoch` as x-axis:
![pixel_cnn](./assets/pixel_cnn.png)
Training results of `pixel_rnn` (yellow, green) and `pixel_cnn` (orange, purple) with `hour` as x-axis:
![pixel_rnn_cnn_relative](./assets/pixel_rnn_cnn_relative.png)
## References
- [Pixel Recurrent Neural Networks](https://arxiv.org/abs/1601.06759)
- [Conditional Image Generation with PixelCNN Decoders](https://arxiv.org/abs/1606.05328)
- [Review by Kyle Kastner](https://github.com/tensorflow/magenta/blob/master/magenta/reviews/pixelrnn.md)
- [igul222/pixel_rnn](https://github.com/igul222/pixel_rnn)
- [kundan2510/pixelCNN](https://github.com/kundan2510/pixelCNN)## Author
Taehoon Kim / [@carpedm20](http://carpedm20.github.io/)