Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/carpedm20/variational-text-tensorflow
TensorFlow implementation of Neural Variational Inference for Text Processing
https://github.com/carpedm20/variational-text-tensorflow
Last synced: 3 months ago
JSON representation
TensorFlow implementation of Neural Variational Inference for Text Processing
- Host: GitHub
- URL: https://github.com/carpedm20/variational-text-tensorflow
- Owner: carpedm20
- License: mit
- Created: 2016-03-18T12:12:30.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2016-08-10T10:34:58.000Z (about 8 years ago)
- Last Synced: 2024-07-31T02:16:20.147Z (3 months ago)
- Language: Python
- Size: 2.73 MB
- Stars: 541
- Watchers: 27
- Forks: 78
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-starred - variational-text-tensorflow - TensorFlow implementation of Neural Variational Inference for Text Processing (Python)
README
Neural Variational Document Model
=================================Tensorflow implementation of [Neural Variational Inference for Text Processing](http://arxiv.org/abs/1511.06038).
![model_demo](./assets/model.png)
This implementation contains:
1. Neural Variational Document Model
- Variational inference framework for generative model of text
- Combines a stochastic document representation with a bag-of-words generative model
2. Neural Answer Selection Model (in progress)
- Variational inference framework for conditional generative model of text
- Combines a LSTM embeddings with an attention mechanism to extract the semantics between question and answerPrerequisites
-------------- Python 2.7 or Python 3.3+
- [NLTK](http://www.nltk.org/)
- [TensorFlow](https://www.tensorflow.org/)Usage
-----To train a model with Penn Tree Bank dataset:
$ python main.py --dataset ptb
To test an existing model:
$ python main.py --dataset ptb --forward_only True
Results
-------Training details of NVDM. The best result can be achieved by onehost updates, not alternative updates.
![scalar](./assets/2016-03-20-final-scalar.png)
![histogram](./assets/2016-03-20-final-hist.png)
Author
------Taehoon Kim / [@carpedm20](http://carpedm20.github.io/)