Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/catalyst-team/alchemy

Experiments logging & visualization
https://github.com/catalyst-team/alchemy

deep-learning experiment-track infrastructure keras machine-learning pytorch reinforcement-learning reproducibility research tensorflow

Last synced: 3 months ago
JSON representation

Experiments logging & visualization

Awesome Lists containing this project

README

        

![Alchemy logo](https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master/Catalyst.Ecosystem/PNG/alchemy-logo.png)

**Experiments logging & visualization**

![Build Status](https://github.com/catalyst-team/alchemy/workflows/CI/badge.svg)
[![CodeFactor](https://www.codefactor.io/repository/github/catalyst-team/alchemy/badge)](https://www.codefactor.io/repository/github/catalyst-team/alchemy)
[![Pipi version](https://img.shields.io/pypi/v/alchemy.svg)](https://pypi.org/project/alchemy/)
[![Docs](https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fcatalyst%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://catalyst-team.github.io/catalyst/index.html)
[![PyPI Status](https://pepy.tech/badge/alchemy)](https://pepy.tech/project/alchemy)

[![Twitter](https://img.shields.io/badge/news-twitter-499feb)](https://twitter.com/CatalystTeam)
[![Telegram](https://img.shields.io/badge/channel-telegram-blue)](https://t.me/catalyst_team)
[![Slack](https://img.shields.io/badge/Catalyst-slack-success)](https://join.slack.com/t/catalyst-team-devs/shared_invite/zt-d9miirnn-z86oKDzFMKlMG4fgFdZafw)
[![Github contributors](https://img.shields.io/github/contributors/catalyst-team/alchemy.svg?logo=github&logoColor=white)](https://github.com/catalyst-team/alchemy/graphs/contributors)

Project [manifest](https://github.com/catalyst-team/catalyst/blob/master/MANIFEST.md). Part of [Catalyst Ecosystem](https://docs.google.com/presentation/d/1D-yhVOg6OXzjo9K_-IS5vSHLPIUxp1PEkFGnpRcNCNU/edit?usp=sharing):
- [Alchemy](https://github.com/catalyst-team/alchemy) - Experiments logging & visualization
- [Catalyst](https://github.com/catalyst-team/catalyst) - Accelerated Deep Learning Research and Development
- [Reaction](https://github.com/catalyst-team/reaction) - Convenient Deep Learning models serving

---

## Installation

Common installation:
```bash
pip install -U alchemy
```

Previous name `alchemy-catalyst` [![PyPI Status](https://pepy.tech/badge/alchemy-catalyst)](https://pepy.tech/project/alchemy-catalyst)

## Getting started

1. Goto [Alchemy](https://alchemy.host/) and get your personal token.

2. Run following **example.py**:
```python
import random

from alchemy import Logger

# insert your personal token here
token = "..."
project = "default"

for gid in range(1):
group = f"group_{gid}"
for eid in range(2):
experiment = f"experiment_{eid}"
logger = Logger(
token=token,
experiment=experiment,
group=group,
project=project,
)
for mid in range(4):
metric = f"metric_{mid}"
# let's sample some random data
n = 300
x = random.randint(-10, 10)
for i in range(n):
logger.log_scalar(metric, x)
x += random.randint(-1, 1)
logger.close()
```
3. Now you should see your metrics on [Alchemy](https://alchemy.host/).

## Catalyst.Ecosystem

1. Goto [Alchemy](https://alchemy.host/) and get your personal token.

2. Log your Catalyst experiment with **AlchemyLogger**:
```python
from catalyst.dl import SupervisedRunner, AlchemyLogger

runner = SupervisedRunner()
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir=logdir,
num_epochs=num_epochs,
verbose=True,
callbacks={
"logger": AlchemyLogger(
token="...", # your Alchemy token
project="your_project_name",
experiment="your_experiment_name",
group="your_experiment_group_name",
)
}
)
```
3. Now you should see your metrics on [Alchemy](https://alchemy.host/).

## Examples

For mode detailed tutorials, please follow [Catalyst examples](https://github.com/catalyst-team/catalyst/tree/master/examples#tutorials).