Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ccextractor/rekognition

Free and Open Source alternative to Amazon's Rekognition service. CCExtractor Development | Poor Man's Rekognition
https://github.com/ccextractor/rekognition

computer-vision deep-learning django django-rest-framework docker face-detection gsoc image-processing machine-learning machinelearning opencv python rest rest-api tensorflow tensorflow-serving video-processing

Last synced: 22 days ago
JSON representation

Free and Open Source alternative to Amazon's Rekognition service. CCExtractor Development | Poor Man's Rekognition

Awesome Lists containing this project

README

        

## Poor Man's Rekognition
---
![](https://www.ccextractor.org/_media/public:gsoc:gsoc-cc.png)
Google Summer Of Code Project under CCExtractor Development

[![Build Status](https://travis-ci.org/ccextractor/Rekognition.svg?branch=master)](https://travis-ci.org/CCExtractor/Rekognition)
[![Python 3.X](https://img.shields.io/badge/python-3.X-blue.svg)](https://www.python.org/downloads/)
[![GPLv3 license](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://github.com/ccextractor/Rekognition/blob/master/LICENSE)

---
This project aims at providing a free alternative to Amazon Rekognition services.

## Setup
### For End-User
```
git clone https://github.com/pymit/Rekognition

docker image build ./
```
Note down the IMAGEID at the end and run the docker

```
docker run -p 8000:8000
```
### For Developers
To setup the project locally for development environment check this wiki [link](https://github.com/YB221/Rekognition/blob/master/contributing.md)

## Usage
This project currently supports
| Feature | cURL |
| :--- | :---- |
Face Recognition with FaceNet |`curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " --form network=1 http://127.0.0.1:8000/api/image/` |
Face Recognition with RetinaNet |`curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " --form network=2 http://127.0.0.1:8000/api/image/` |
| Similar Face Search | `curl -i -X POST -H "Content-Type: multipart/form-data" -F "file=@ " -F "compareImage=@ " http://127.0.0.1:8000/api/simface/` |
| NSFW Classifier | `curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " http://127.0.0.1:8000/api/nsfw/` |
| Text Extraction | `curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " http://127.0.0.1:8000/api/scenetext/` |
| Object Detection | `curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " http://127.0.0.1:8000/api/objects/` |
| Scene Classification | `curl -i -X POST -H "Content-Type: multipart/form-data " -F "file=@ " http://127.0.0.1:8000/api/scenedetect/` |

Details on documentation can be found [here](https://github.com/pymit/Rekognition/wiki/API-Documentation).

## Communication
Real-time communication for this project happens on slack channel of CCExtractor Development, channel [link](https://rhccgsoc15.slack.com/). You may join this channel via this [link](https://ccextractor.org/public:general:support)

## References
This project uses the following.
1. [FaceNet](https://github.com/davidsandberg/facenet)
2. [CRNN](https://arxiv.org/pdf/1507.05717.pdf)
3. [EAST](https://arxiv.org/pdf/1704.03155.pdf)
4. [Synth90k](https://www.robots.ox.ac.uk/~vgg/data/text/)
5. [YOLOv3](https://pjreddie.com/darknet/yolo/)
6. [Places365](http://places2.csail.mit.edu/)
7. [RetinaFace](https://arxiv.org/pdf/1905.00641.pdf)

## License
This software is licensed under GNU GPLv3. Please see the included [License file](https://github.com/pymit/Rekognition/blob/master/LICENSE).