Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cdancette/vqa-cp-leaderboard
A collections of papers about VQA-CP datasets and their results
https://github.com/cdancette/vqa-cp-leaderboard
Last synced: 10 days ago
JSON representation
A collections of papers about VQA-CP datasets and their results
- Host: GitHub
- URL: https://github.com/cdancette/vqa-cp-leaderboard
- Owner: cdancette
- Created: 2020-09-25T09:12:20.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2022-03-18T10:02:49.000Z (over 2 years ago)
- Last Synced: 2024-04-05T14:31:02.787Z (8 months ago)
- Language: Shell
- Size: 86.9 KB
- Stars: 36
- Watchers: 3
- Forks: 2
- Open Issues: 3
-
Metadata Files:
- Readme: README.rst
Awesome Lists containing this project
README
VQA-CP Leaderboard
===================A collections of papers about the VQA-CP dataset and a benchmark / leaderboard of their results.
VQA-CP_ is an out-of-distribution dataset for Visual Question Answering,
which is designed to penalize models that rely on question biases to give an answer.
You can download VQA-CP annotations here : https://computing.ece.vt.edu/~aish/vqacp/Notes:
- All reported papers do not use the same baseline architectures,
so the scores might not be directly comparable. This leaderboard
is only made as a reference of all bias-reduction methods that
were tested on VQA-CP.- We mention the presence or absence of a validation set, because
for out-of-distribution datasets, it is very important to find hyperparameters
and do early-stopping on a validation set that has the same distribution as
the training set. Otherwise, there is a risk of overfitting the testing set
and its biases, which defeats the point of the VQA-CP dataset. This is why we
**highly recommand** for future work that they build a **validation set**
from a part of training set.You can read an overview of some of those bias-reduction methods here: https://cdancette.fr/2020/11/21/overview-bias-reductions-vqa/
VQA-CP v2
***********In bold are highlighted best results on architectures without pre-training.
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| Name | Base Arch. | Conference | All | Yes/No | Numbers | Other | Validation |
+=================+======================+=========================+===========+============+============+============+============+
| AttReg_ [2]_ | LMH_ | Preprint | 59.92 | 87.28 | 52.39 | 47.65 | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| GGE-DQ_ | UpDown | ICCV 2021 | 57.32 | 87.04 | 27.75 | 49.59 | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| AdaVQA_ | UpDown | IJCAI 2021 | 54.67 | 72.47 | 53.81 | 45.58 | No Valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| DecompLR_ | UpDown | AAAI 2020 | 48.87 | 70.99 | 18.72 | 45.57 | No Valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| MUTANT_ | LXMERT | EMNLP 2020 | 69.52 | 93.15 | 67.17 | 57.78 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| MUTANT_ | UpDown | EMNLP 2020 | **61.72** | **88.90** | **49.68** | **50.78** | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| CL_ | UpDown + LMH_ + CSS_ | EMNLP 2020 | 59.18 | 86.99 | 49.89 | 47.16 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| RMFE_ | UpDown + LMH_ | NeurIPS 2020 | 54.55 | 74.03 | 49.16 | 45.82 | No Valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| RandImg_ | UpDown | NeurIPS 2020 | 55.37 | 83.89 | 41.60 | 44.20 | Valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| Loss-Rescaling_ | UpDown + LMH_ | Preprint 2020 | 53.26 | 72.82 | 48.00 | 44.46 | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| ESR_ | UpDown | ACL 2020 | 48.9 | 69.8 | 11.3 | 47.8 | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| GradSup_ | Unshuffling_ | ECCV 2020 | 46.8 | 64.5 | 15.3 | 45.9 | **Valset** |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| VGQE_ | S-MRL | ECCV 2020 | 50.11 | 66.35 | 27.08 | 46.77 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| CSS_ | UpDown + LMH_ | CVPR 2020 | 58.95 | 84.37 | 49.42 | 48.21 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| Semantic_ | UpDn + RUBi_ | Preprint 2020 | 47.5 | | | | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| Unshuffling_ | UpDown | Preprint 2020 | 42.39 | 47.72 | 14.43 | 47.24 | **Valset** |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| CF-VQA_ | UpDown + LMH_ | Preprint 2020 | 57.18 | 80.18 | 45.62 | 48.31 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| LMH_ | UpDown | EMNLP 2019 | 52.05 | 69.81 [1]_ | 44.46 [1]_ | 45.54 [1]_ | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| RUBi_ | S-MRL [3]_ | NeurIPS 2019 | 47.11 | 68.65 | 20.28 | 43.18 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| SCR_ [2]_ | UpDown | NeurIPS 2019 | 49.45 | 72.36 | 10.93 | 48.02 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| NSM_ | | NeurIPS 2019 | 45.80 | | | | |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| HINT_ [2]_ | UpDown | ICCV 2019 | 46.73 | 67.27 | 10.61 | 45.88 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| ActSeek_ | UpDown | CVPR 2019 | 46.00 | 58.24 | 29.49 | 44.33 | **ValSet** |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| GRL_ | UpDown | NAACL-HLT 2019 Workshop | 42.33 | 59.74 | 14.78 | 40.76 | **Valset** |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| AdvReg_ | UpDown | NeurIPS 2018 | 41.17 | 65.49 | 15.48 | 35.48 | No Valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+
| GVQA_ | | CVPR 2018 | 31.30 | 57.99 | 13.68 | 22.14 | No valset |
+-----------------+----------------------+-------------------------+-----------+------------+------------+------------+------------+.. [1] Retrained by CSS_
.. [2] Using additional information
.. [3] S-MRL stands for Simplified-MUREL. The architecture was proposed in RUBi_... VQA-CP v1
.. *********Papers
******.. .. |br| raw:: html
..
_`GGE-DQ`
| Greedy Gradient Ensemble for Robust Visual Question Answering
| Xinzhe Han, Shuhui Wang, Chi Su, Qingming Huang, Qi Tian
| https://arxiv.org/pdf/2107.12651.pdf
_`DecompLR`
| Overcoming language priors in vqa via decomposed linguistic representations
| Chenchen Jing, Yuwei Wu, Xiaoxun Zhang, Yunde Jia, Qi Wu
| https://ojs.aaai.org/index.php/AAAI/article/view/6776
_`AdaVQA`
| AdaVQA: Overcoming Language Priors with Adapted Margin Cosine Loss
| Yangyang Guo, Liqiang Nie, Zhiyong Cheng, Feng Ji, Ji Zhang, Alberto Del Bimbo
| https://arxiv.org/pdf/2105.01993.pdf_`MUTANT`
| MUTANT: A Training Paradigm for Out-of-Distribution Generalization in Visual Question Answering - **EMNLP 2020**
| Tejas Gokhale, Pratyay Banerjee, Chitta Baral, Yezhou Yang
| https://www.aclweb.org/anthology/2020.emnlp-main.63/
| code: https://github.com/tejas-gokhale/vqa_mutant
_`CL`
| Learning to Contrast the Counterfactual Samples for Robust Visual Question Answering - **EMNLP 2020**
| Zujie Liang, Weitao Jiang, Haifeng Hu, Jiaying Zhu
| https://www.aclweb.org/anthology/2020.emnlp-main.265.pdf
_`RMFE`
| Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies - **NeurIPS 2020**
| Itai Gat, Idan Schwartz, Alexander Schwing, Tamir Hazan
| https://proceedings.neurips.cc/paper/2020/hash/20d749bc05f47d2bd3026ce457dcfd8e-Abstract.html
| code: https://github.com/itaigat/removing-bias-in-multi-modal-classifiers
_`RandImg`
| On the Value of Out-of-Distribution Testing:An Example of Goodhart’s Law
| Damien Teney, Kushal Kafle, Robik Shrestha, Ehsan Abbasnejad, Christopher Kanan, Anton van den Hengel
| https://arxiv.org/abs/2005.09241
_`Loss-Rescaling`
| Loss-rescaling VQA: Revisiting Language Prior Problem from a Class-imbalance View - **Preprint 2020**
| Yangyang Guo, Liqiang Nie, Zhiyong Cheng, Qi Tian
| https://arxiv.org/abs/2010.16010
_`ESR` (Embarrassingly Simple Regularizer)
| A Negative Case Analysis of Visual Grounding Methods for VQA - **ACL 2020**
| Robik Shrestha, Kushal Kafle, Christopher Kanan
| https://www.aclweb.org/anthology/2020.acl-main.727.pdf
_`GradSup`
| Learning what makes a difference from counterfactual examples and gradient supervision - **ECCV 2020**
| Damien Teney, Ehsan Abbasnedjad, Anton van den Hengel
| https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550579.pdf
_`VGQE`
| Reducing Language Biases in Visual Question Answering with Visually-Grounded Question Encoder - **ECCV 2020**
| Gouthaman KV, Anurag Mittal
| https://arxiv.org/abs/2007.06198
_`CSS`
| Counterfactual Samples Synthesizing for Robust Visual Question Answering - **CVPR 2020**
| Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, Yueting Zhuang
| https://arxiv.org/abs/2003.06576
| code: https://github.com/yanxinzju/CSS-VQA
_`Semantic`
| Estimating semantic structure for the VQA answer space - **Preprint 2020**
| Corentin Kervadec, Grigory Antipov, Moez Baccouche, Christian Wolf
| https://arxiv.org/abs/2006.05726
_`Unshuffling`
| Unshuffling Data for Improved Generalization - **Preprint 2020**
| Damien Teney, Ehsan Abbasnejad, Anton van den Hengel
| https://arxiv.org/abs/2002.11894.. raw:: html
Summary
Inspired by Invariant Risk Minimization (Arjovskyet al.).
They make use of two training sets with different
biases to learn a more robust classifier (that will perform
better on OOD data).
_`CF-VQA`
| Counterfactual VQA: A Cause-Effect Look at Language Bias - **Preprint 2020**
| Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, Ji-Rong Wen
| https://arxiv.org/abs/2006.04315v2.. raw:: html
Summary
They formalize the ensembling framwork from RUBi_ and LMH_ using
the causality framework... raw:: html
_`LMH`
| Don’t Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases - **EMNLP 2019**
| Christopher Clark, Mark Yatskar, Luke Zettlemoyer
| https://arxiv.org/abs/1909.03683
| code: https://github.com/chrisc36/bottom-up-attention-vqa
_`RUBi`
| RUBi: Reducing Unimodal Biases in Visual Question Answering - **NeurIPS 2019**
| Remi Cadene, Corentin Dancette, Hedi Ben-younes, Matthieu Cord, Devi Parikh
| https://arxiv.org/abs/1906.10169.. raw:: html
Summary
During training : Ensembling with a question-only model that will learn the biases, and let the main VQA model learn
useful behaviours.
During testing: We remove the question-only model, and keep only the VQA model.
| code: https://github.com/cdancette/rubi.bootstrap.pytorch
_`NSM`
| Learning by Abstraction: The Neural State Machine
| Drew A. Hudson, Christopher D. Manning
| https://arxiv.org/abs/1907.03950_`SCR`
| Self-Critical Reasoning for Robust Visual Question Answering - **NeurIPS 2019**
| Jialin Wu, Raymond J. Mooney
| https://arxiv.org/abs/1905.09998
| code: https://github.com/jialinwu17/self_critical_vqa
_`HINT`
| Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded - **ICCV 2019**
| Ramprasaath R. Selvaraju, Stefan Lee, Yilin Shen, Hongxia Jin, Shalini Ghosh, Larry Heck, Dhruv Batra, Devi Parikh
| https://arxiv.org/abs/1902.03751
_`ActSeek`
| Actively Seeking and Learning from Live Data - **CVPR 2019**
| Damien Teney, Anton van den Hengel
| https://arxiv.org/abs/1904.02865
_`GRL`
| Adversarial Regularization for Visual Question Answering:Strengths, Shortcomings, and Side Effects - **NAACL HLT - Workshop on Shortcomings in Vision and Language (SiVL) **
| Gabriel Grand, Yonatan Belinkov
| https://arxiv.org/pdf/1906.08430.pdf
| code: https://github.com/gabegrand/adversarial-vqa
_`AdvReg`
| Overcoming Language Priors in Visual Question Answering with Adversarial Regularization - **NeurIPS 2018**
| Sainandan Ramakrishnan, Aishwarya Agrawal, Stefan Lee
| https://papers.nips.cc/paper/7427-overcoming-language-priors-in-visual-question-answering-with-adversarial-regularization.pdf
| code:
_`GVQA`
| Don’t Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering - **CVPR 2018**
| Aishwarya Agrawal, Dhruv Batra, Devi Parikh, Aniruddha Kembhavi
| https://arxiv.org/abs/1712.00377
| code: https://github.com/AishwaryaAgrawal/GVQA.. _VQA-CP: https://arxiv.org/abs/1712.00377