Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ce-dric/tensorrt-batch
TensorRT capable of processing batch units
https://github.com/ce-dric/tensorrt-batch
docker docker-container python pytorch tensorrt tensorrt-engine tensorrt-inference
Last synced: 28 days ago
JSON representation
TensorRT capable of processing batch units
- Host: GitHub
- URL: https://github.com/ce-dric/tensorrt-batch
- Owner: ce-dric
- Created: 2024-07-08T03:10:58.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2024-07-08T07:52:09.000Z (6 months ago)
- Last Synced: 2024-12-19T02:09:18.501Z (28 days ago)
- Topics: docker, docker-container, python, pytorch, tensorrt, tensorrt-engine, tensorrt-inference
- Language: Jupyter Notebook
- Homepage:
- Size: 145 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### Requirements
- Docker
- Nvidia GPU### Getting Started
1. make container (docker)
```shell
> docker run --rm -it --gpus all --shm-size=16G -p 8888:8888 -v %cd%:/workspace nvcr.io/nvidia/pytorch:20.12-py3 bash
> pip install pycuda==2024.1
```
or
```
> docker build -t trt:latest .
> docker run --rm -it --gpus all --shm-size=16G -p 8888:8888 -v %cd%:/workspace trt bash
```2. make onnx model
```shell
> python export.py
```3. build tensorrt model
```shell
> trtexec --onnx=fcn-resnet101.onnx --workspace=64 --minShapes=input:1x3x256x256 --optShapes=input:4x3x256x256 --maxShapes=input:80x3x256x256 --buildOnly -saveEngine=fcn-resnet101.engine
# &&&& PASSED TensorRT.trtexec ~
```4. launch notebook
```shell
> jupyter notebook --ip 0.0.0.0 --allow-root --no-browser
```