An open API service indexing awesome lists of open source software.

https://github.com/celestialtaha/psql-query-builder

Generate & Run PostgreSQL queries by only providing natural language inputs using AI | langchain compatible
https://github.com/celestialtaha/psql-query-builder

ai-agent ai-agent-tools database langchain nlp nlp-machine-learning openai-api postgresql python query-builder sql sql-generator

Last synced: about 1 month ago
JSON representation

Generate & Run PostgreSQL queries by only providing natural language inputs using AI | langchain compatible

Awesome Lists containing this project

README

          

# 🔍 PSQL Query Builder

Transform natural language into optimized PostgreSQL queries with AI

[![PyPI version](https://badge.fury.io/py/psql-query-builder.svg)](https://badge.fury.io/py/psql-query-builder)
[![Python Versions](https://img.shields.io/pypi/pyversions/psql-query-builder.svg)](https://pypi.org/project/psql-query-builder/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Downloads](https://static.pepy.tech/badge/psql-query-builder)](https://pepy.tech/project/psql-query-builder)

## ✨ Overview

PSQL Query Builder is a powerful Python tool that transforms natural language into optimized PostgreSQL queries using AI. It bridges the gap between human language and SQL, making database interaction accessible to everyone - not just SQL experts.

Built on OpenAI's advanced language models, this tool analyzes your database schema and generates precise, efficient SQL queries based on plain English descriptions. Whether you're a data analyst without SQL expertise, a developer looking to speed up query writing, or a database administrator seeking to simplify access for your team, PSQL Query Builder streamlines your workflow.

## ✅ Features



🤖 AI-Powered SQL Generation



  • Transform natural language to optimized SQL

  • Context-aware query generation

  • Support for complex queries and joins




⚡ Smart Schema Caching



  • Automatic database schema analysis

  • Configurable cache TTL

  • Significant performance improvement






🛠️ Flexible Configuration



  • Environment variables support

  • Command-line arguments

  • Multiple output formats (table, JSON, CSV)




🔧 Intelligent Error Handling



  • Automatic fix suggestions

  • Detailed error messages

  • Interactive query correction



## 🎯 Use Cases



📊 Data Analysts


Generate complex SQL queries without deep SQL knowledge


Quickly explore database structures and relationships


Prototype queries in natural language before refinement




👨‍💻 Developers


Speed up database query development


Reduce time spent debugging complex SQL syntax


Generate queries for unfamiliar database schemas




🛡️ Database Admins


Provide simplified access to non-technical team members


Quickly generate queries for common reporting needs


Validate schema design through natural language



## 🚀 Quick Start

### Installation

```bash
pip install psql-query-builder
```

### Basic Usage

```bash
# Using environment variables for connection
export PSQL_CONNECTION_STRING="postgresql://username:password@localhost:5432/database"
export OPENAI_API_KEY="your-openai-api-key"

# Run a query
psql-query-builder --query "Find all active users who registered last month"
```

### Python API

```python
from psql_query_builder import QueryBuilder

# Initialize the query builder
builder = QueryBuilder(
connection_string="postgresql://username:password@localhost:5432/database",
openai_api_key="your-openai-api-key"
)

# Generate and execute a query
results = builder.run_query(
"Find all products with more than 100 units in stock and price less than $50",
execute=True
)

# Print the results
print(results)
```

### LangChain Integration

PSQL Query Builder can be easily integrated with LangChain to enable natural language database queries in your AI applications:

```python
# Using the @tool decorator approach
from langchain_core.tools import tool

@tool
def query_database(query: str, connection_string: str = "postgresql://user:pass@localhost/db"):
"""Execute a natural language query against a PostgreSQL database."""
from psql_query_builder import QueryBuilder

builder = QueryBuilder(connection_string=connection_string)
return builder.run_query(query, execute=True)

# Use with LangChain
from langchain_openai import ChatOpenAI
from langchain.agents import create_openai_tools_agent, AgentExecutor

llm = ChatOpenAI(model="gpt-4-turbo")
tools = [query_database]
agent = create_openai_tools_agent(llm, tools, prompt=None)
agent_executor = AgentExecutor(agent=agent, tools=tools)

# Run the agent
response = agent_executor.invoke({"input": "Find all users who registered last month"})
print(response["output"])
```

For more advanced integration options, see the full documentation.

## ⚙️ Configuration

Environment Variables

```bash
# Full connection string
export PSQL_CONNECTION_STRING="postgresql://username:password@localhost:5432/database"

# Or individual connection parameters
export PSQL_HOST="localhost"
export PSQL_PORT="5432"
export PSQL_USER="username"
export PSQL_PASSWORD="password"
export PSQL_DATABASE="database"

# OpenAI API key
export OPENAI_API_KEY="your-openai-api-key"
```

Command-line Arguments

```bash
psql-query-builder \
--host localhost \
--port 5432 \
--user username \
--password password \
--database database \
--api-key your-openai-api-key \
--query "Find all products with more than 100 units in stock" \
--dry-run # Optional: generate SQL without executing
```

Dry Run Mode

```bash
# Generate SQL only, don't execute (useful for reviewing queries before running on production databases)
psql-query-builder --query "Find all inactive users who haven't logged in for 3 months" --dry-run

# Output:
# Generated SQL query (dry run mode):
# --------------------------------------------------
# SELECT u.id, u.username, u.email, u.last_login
# FROM users u
# WHERE u.last_login < NOW() - INTERVAL '3 months'
# ORDER BY u.last_login ASC;
# --------------------------------------------------
```

Schema Caching

For better performance with repeated queries, enable schema caching:

```bash
# Enable schema caching with default settings
psql-query-builder --query "Find all users who placed orders in the last week" --cache

# Specify cache path and TTL (time-to-live in seconds)
psql-query-builder --query "Find all users who placed orders in the last week" \
--cache \
--cache-path "/tmp/schema_cache" \
--cache-ttl 3600

# Force refresh the cache
psql-query-builder --query "Find all users who placed orders in the last week" \
--cache \
--force-refresh
```

## 📘 Advanced Usage



💬 Interactive Mode


Start an interactive session for multiple queries:


psql-query-builder

Then enter queries at the prompt:


> Find all customers in California

> Show revenue by product category
> exit



🔍 Single Query Mode


Execute a single query and exit:


psql-query-builder --query "Find all users 

who registered in the last month"

Perfect for scripts and automation



## 📚 API Reference

Python API

```python
from psql_query_builder import QueryBuilder

# Initialize with connection string
builder = QueryBuilder(
connection_string="postgresql://username:password@localhost:5432/database",
openai_api_key="your-openai-api-key"
)

# Or with individual parameters
builder = QueryBuilder(
host="localhost",
port=5432,
database="mydatabase",
user="myuser",
password="mypassword",
openai_api_key="your-openai-api-key"
)

# Generate SQL without executing
sql = builder.generate_query("Find all users who registered last month")
print(sql)

# Generate and execute query
results = builder.run_query(
"Find all products with more than 100 units in stock",
execute=True
)
print(results)
```

## 🚩 Roadmap

Future development plans for PSQL Query Builder include:

- [ ] Support for more database systems (MySQL, SQLite, SQL Server)
- [ ] Interactive SQL editing and refinement
- [ ] Query history management and reuse
- [ ] Integration with popular database tools and ORMs
- [ ] Web interface for non-CLI usage
- [ ] Query optimization suggestions
- [ ] Support for database migrations and schema changes

Feel free to contribute to any of these features or suggest new ones!

## 👨‍💻 Contributing

Contributions are welcome! Here's how you can help:

1. **Report bugs or request features**: Open an issue describing what you found or what you'd like to see
2. **Submit improvements**: Fork the repository, make your changes, and submit a pull request
3. **Improve documentation**: Help clarify or expand the documentation
4. **Share your use cases**: Let us know how you're using PSQL Query Builder

## 📜 License

MIT