Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cellgeni/sceasy
A package to help convert different single-cell data formats to each other
https://github.com/cellgeni/sceasy
Last synced: about 2 months ago
JSON representation
A package to help convert different single-cell data formats to each other
- Host: GitHub
- URL: https://github.com/cellgeni/sceasy
- Owner: cellgeni
- License: gpl-3.0
- Created: 2019-07-17T14:46:01.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-02-28T10:07:24.000Z (11 months ago)
- Last Synced: 2024-04-18T05:37:17.310Z (9 months ago)
- Language: R
- Size: 74.2 KB
- Stars: 328
- Watchers: 8
- Forks: 51
- Open Issues: 45
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Bioinformatics-Benchmarks - GitHub
README
# sceasy
`sceasy` is a package that helps easy conversion of different single-cell data formats to each other. Converting to AnnData creates a file that can be directly used in [cellxgene](https://github.com/chanzuckerberg/cellxgene) which is an interactive explorer for single-cell transcriptomics datasets.
| 💡 for h5da to rds conversion also see [https://github.com/cellgeni/schard](https://github.com/cellgeni/schard) |
| ----------------------------------------------------------------------------------------------- |> ### Warning
> Before installing the conda packages below please first create a new conda environment EnvironmentName and activate it. Everything else can be installed in R.## Installation
sceasy is installable either as a bioconda package:
```conda install -c bioconda r-sceasy```
or as an R package:
```devtools::install_github("cellgeni/sceasy")```
which will require the biconductor packages BiocManager and LoomExperiment:
```
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")BiocManager::install(c("LoomExperiment", "SingleCellExperiment"))
```To use sceasy ensure the anndata package is installed:
```conda install anndata -c bioconda```
Optionally, if you plan to convert between loom and anndata, please also ensure that the `loompy` package is installed:
```conda install loompy -c bioconda```
You will also need to install reticulate package:
```install.packages('reticulate')```
## Usage
Before converting your data please load the following libraries in your R session:
```
library(sceasy)
library(reticulate)
use_condaenv('EnvironmentName')
loompy <- reticulate::import('loompy')
```**Seurat to AnnData**
```
sceasy::convertFormat(seurat_object, from="seurat", to="anndata",
outFile='filename.h5ad')
```**AnnData to Seurat**
```
sceasy::convertFormat(h5ad_file, from="anndata", to="seurat",
outFile='filename.rds')
```
**Seurat to SingleCellExperiment**```
sceasy::convertFormat(seurat_object, from="seurat", to="sce",
outFile='filename.rds')
```
**SingleCellExperiment to AnnData**```
sceasy::convertFormat(sce_object, from="sce", to="anndata",
outFile='filename.h5ad')
```
**SingleCellExperiment to Loom**```
sceasy::convertFormat(sce_object, from="sce", to="loom",
outFile='filename.loom')
```
**Loom to AnnData**```
sceasy::convertFormat('filename.loom', from="loom", to="anndata",
outFile='filename.h5ad')
```
**Loom to SingleCellExperiment**```
sceasy::convertFormat('filename.loom', from="loom", to="sce",
outFile='filename.rds')
```