An open API service indexing awesome lists of open source software.

https://github.com/cgbur/arcode-rs

An arithmetic coder for Rust.
https://github.com/cgbur/arcode-rs

arithmetic-coding cabac data-compression decoding encoder entropy-coding lossless lossless-compression-algorithm lossless-data-compression

Last synced: about 2 months ago
JSON representation

An arithmetic coder for Rust.

Awesome Lists containing this project

README

          

# Arcode
An arithmetic coder for Rust.

[![Crates.io](https://img.shields.io/crates/v/arcode?color=blueviolet)](https://crates.io/crates/arcode)
[![Crates.io](https://img.shields.io/crates/l/arcode)](https://crates.io/crates/arcode)
[![GitHub top language](https://img.shields.io/github/languages/top/cgbur/arcode-rs?color=orange)](https://crates.io/crates/arcode)

## About

This crate provides the an efficient implementation of
an [arithmetic encoder/decoder](https://en.wikipedia.org/wiki/Arithmetic_coding). This crate is based off the paper
that describes arithmetic coding found [here](https://web.stanford.edu/class/ee398a/handouts/papers/WittenACM87ArithmCoding.pdf).
This implementation features many readability and performance improvements, especially on the decoding side.

The goal of this project is not to provide an out-of-the-box compression solution.
Arithmetic coding ([entropy encoding](https://en.wikipedia.org/wiki/Entropy_encoding)) is the backbone of almost every
modern day compression scheme. This crate is meant to be included in future projects that rely on an efficient entropy
coder e.g. [PPM](https://en.wikipedia.org/wiki/Prediction_by_partial_matching), [LZ77/LZ78](https://en.wikipedia.org/wiki/LZ77_and_LZ78),
[h265/HEVC](https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding).

## Core components

There are a lot of structs available for use but for the average user there are only a few that will be used.
- [Model](model/struct.Model.html) models of the probability of symbols. Counts can be adjusted
as encoding is done to improve compression.
- [Encoder](encode/struct.ArithmeticEncoder.html) encodes symbols given a source model and a symbol.
- [Decoder](decode/struct.ArithmeticDecoder.html) decodes symbols given a source model and a bitstream.

# Examples
In the git repository there is an [old_complex.rs](https://github.com/cgbur/arcode-rs/blob/master/example/example.rs)
file that does context switching on a per character basis. A simpler example can be found at [new_simple.rs](https://github.com/cgbur/arcode-rs/blob/master/tests/integration_test.rs)

## Input and output bitstreams
In order for arithmetic coding to work streams need to be read a bit at a time (for decoding and for the encoders output).
Because of this, [BitBit](https://docs.rs/bitbit) is required. **Wrapping whatever your input is in a buffered reader/writer
should greatly improve performance.**

Using bitbit to create an input stream.
```rust
use arcode::bitbit::{BitReader, MSB, BitWriter};
use std::io::Cursor;

fn read_example() {
// normally you would have a Read type with a BufReader
let mut source = Cursor::new(vec![0u8; 4]);
let input: BitReader<_, MSB> = BitReader::new(&mut source);
}

fn out_example() {
// once again would be Write type with a BufWriter
let compressed = Cursor::new(vec![]);
let mut compressed_writer = BitWriter::new(compressed);
}
```

### Source Model(s)
Depending on your application you could have one or many source models.
The source model is relied on by the encoder and the decoder. If the decoder ever becomes
out of phase with the encoder you will be decoding nonsense.

#### model::Builder
In order to make a source model you need to use the model::Builder struct.

```rust
use arcode::{EOFKind, Model};

fn source_model_example() {
// create a new model that has symbols 0-256
// 8 bit values + one EOF marker
let mut model_with_eof = Model::builder()
.num_symbols(256)
.eof(EOFKind::EndAddOne)
.build();

// model for 8 bit 0 - 255, if we arent using
// the EOF flag we can set it to NONE or let it default
// to none as in the second example below.
let model_without_eof = Model::builder()
.num_symbols(256)
.eof(EOFKind::None)
.build();
let model_without_eof = Model::builder().num_symbols(256).build();

// we can also create a model for 0-255 using num_bits
let model_8_bit = Model::builder().num_bits(8).build();

// update the probability of symbol 4.
model_with_eof.update_symbol(4);
}
```
## Encode
Encoding some simple input
```rust
use arcode::bitbit::BitWriter;
use arcode::{ArithmeticEncoder, EOFKind, Model};
use std::io::{Cursor, Result};

/// Encodes bytes and returns the compressed form
fn encode(data: &[u8]) -> Result> {
let mut model = Model::builder()
.num_bits(8)
.eof(EOFKind::EndAddOne)
.build();

// make a stream to collect the compressed data
let compressed = Cursor::new(vec![]);
let mut compressed_writer = BitWriter::new(compressed);

let mut encoder = ArithmeticEncoder::new(48);

for &sym in data {
encoder.encode(sym as u32, &model, &mut compressed_writer)?;
model.update_symbol(sym as u32);
}

encoder.encode(model.eof(), &model, &mut compressed_writer)?;
encoder.finish_encode(&mut compressed_writer)?;
compressed_writer.pad_to_byte()?;

// retrieves the bytes from the writer. This will
// be cleaner when bitbit updates. Not necessary if
// using files or a stream
Ok(compressed_writer.get_ref().get_ref().clone())
}

```
### Decode
```rust
use arcode::bitbit::{BitReader, MSB};
use arcode::{ArithmeticDecoder, EOFKind, Model};
use std::io::{Cursor, Result};

/// Decompresses the data
fn decode(data: &[u8]) -> Result> {
let mut model = Model::builder()
.num_bits(8)
.eof(EOFKind::EndAddOne)
.build();

let mut input_reader = BitReader::<_, MSB>::new(data);
let mut decoder = ArithmeticDecoder::new(48);
let mut decompressed_data = vec![];

while !decoder.finished() {
let sym = decoder.decode(&model, &mut input_reader)?;
model.update_symbol(sym);
decompressed_data.push(sym as u8);
}

decompressed_data.pop(); // remove the EOF

Ok(decompressed_data)
}
```