Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cggos/imu_x_fusion

IMU + X(GNSS, 6DoF Odom) Loosely-Coupled Fusion Localization based on ESKF, IEKF, UKF(UKF/SPKF, JUKF, SVD-UKF) and MAP
https://github.com/cggos/imu_x_fusion

ekf-localization eskf gnss imu-sensor nonlinear-least-squares sensor-fusion slam ukf-localization visual-inertial-odometry

Last synced: 7 days ago
JSON representation

IMU + X(GNSS, 6DoF Odom) Loosely-Coupled Fusion Localization based on ESKF, IEKF, UKF(UKF/SPKF, JUKF, SVD-UKF) and MAP

Awesome Lists containing this project

README

        

# IMU + X Fusion

IMU + X Loosely-Coupled Fusion Localization

---

## Overview

* IMU + GPS

- [x] ESKF: [Multi-Sensor Fusion: IMU and GPS loose fusion based on ESKF](https://cgabc.xyz/posts/4e9a780e/)

* IMU + 6DoF Odom (e.g.: Stereo Visual Odometry)

- [x] ESKF: [IMU and 6 DoF Odometry (Stereo Visual Odometry) Loosely-Coupled Fusion Localization based on ESKF (Presentation)](http://dx.doi.org/10.13140/RG.2.2.28797.69602)

- [x] IEKF: https://cgabc.xyz/posts/784a80cb/#iekf

- [x] UKF(including JUKF and SVD-UKF): [IMU and 6 DoF Odometry (Stereo Visual Odometry) Loosely-Coupled Fusion Localization based on UKF](http://dx.doi.org/10.13140/RG.2.2.30602.54727)

- [x] MAP(User-defined L-M, Ceres-Solver, G2O and GTSAM)

## Features

* Dataset
- [x] KAIST dataset: ROS publish

* Sensors
- [x] IMU
- [x] Numerical Integration (TODO: RK4)
- [ ] Pre-Integration
- [ ] Wheel Odometer
- [ ] Manometer
- [x] GPS
- [x] 6DoF Odom (Stereo Visual Odometry)
- [ ] LiDAR
- [ ] Multi-modal data

* State Estimation
- [x] EKF
- [x] ESKF
- [x] IEKF
- [x] UKF
- [x] JUKF
- [x] SVD-UKF
- [ ] Particle Filter
- [x] MAP
- [x] User-defined G-N
- [x] Ceres-Solver
- [x] G2O
- [x] GTSAM

* Local / Global Angular Error (Rotation Perturbation)
- [x] Local Angular Error (OK)
- [x] Global Angular Error (TODO: why Poor)
```cpp
enum ANGULAR_ERROR { LOCAL_ANGULAR_ERROR, GLOBAL_ANGULAR_ERROR };
```

* Debug
- [x] Check Measurement Jacobian Matrix

## Requirements

tested on Ubuntu 16.04, Ubuntu 18.04 and Ubuntu 20.04

* Ubuntu 16.04 & ROS Kinetic

* OpenCV 3
* ROS package: nmea_navsat_driver
* GeographicLib 1.50.1 (built from souce code, cmake 3.18.0 tested)

* Ubuntu 18.04 & ROS Melodic

* OpenCV 3
* ROS package: nmea_navsat_driver
* GeographicLib 1.49
```sh
sudo apt install libgeographic-dev
```

* Ubuntu 20.04 & ROS Melodic

* OpenCV 3
* ROS package: nmea_navsat_driver
* GeographicLib 1.50.1
```sh
sudo apt install libgeographic-dev
```

## Build

```sh
mkdir -p ws_msf/src
cd ws_msf/src
git clone xxx
cd ..
catkin_make -j4 # error happened when using the default cmake 3.5.1 on Ubuntu 16.04, upgrade it
# or
catkin build -j4
```

## Run on Host

### IMU + GNSS

test data: [utbm_robocar_dataset_20180719_noimage.bag](https://lcas.lincoln.ac.uk/owncloud/index.php/s/KfItDFgwwis5Xrk)

* [sensor_msgs/Imu] /imu/data: 100 hz
* [nmea_msgs/Sentence] /nmea_sentence: 15 hz
* [sensor_msgs/NavSatFix] /fix: 5 hz
* [nav_msgs/Path] /nav_path: 63 hz

```sh
roslaunch imu_x_fusion imu_gnss_fusion.launch
rosbag play -s 25 utbm_robocar_dataset_20180719_noimage.bag
```

ROS graph and path on rviz:




plot the result path (fusion_gps.csv & fusion_state.csv) on Google Map using the scripts `folium_csv.py`:



### IMU + 6DoF Odom

#### VO: ORB-SLAM2 (Stereo) + EuRoC V1_01_easy.bag

```sh
roslaunch imu_x_fusion imu_vo_fusion.launch [est:=ekf, ukf or map]
```

##### run ORB-SLAM2 (Stereo) and play back bag file

```sh
# https://github.com/cggos/orbslam2_cg
# pose cov:
# sigma_pv: 0.001
# sigma_rp: 0.5
# sigma_yaw: 0.5
roslaunch orbslam2_ros run_stereo_euroc.launch

rosbag play V1_01_easy.bag
```



results(Green path: estimated pose; Red path: pose of VO):



##### Use the recorded bag file directly

Download [orbslam2_v101easy.bag](http://gofile.me/5lGth/4XBQVLhAn)

```sh
rosbag play orbslam2_v101easy.bag
```

#### VO: ORB-SLAM2 (Stereo) + MYNTEYE-S1030 Camera

```sh
# TODO: Test
roslaunch imu_x_fusion imu_vo_fusion_mynteye.launch

roslaunch mynt_eye_ros_wrapper mynteye.launch
```

### Run with KAIST Dataset

```sh
rosrun imu_x_fusion kaist_pub /dev_sdb/datasets/KAIST/urban39-pankyo
```

## Run with Docker

```sh
# pull from DockerHub
sudo docker pull cggos/ubuntu-ros-slam:bionic-melodic

# run, e.g.: imu_vo_fusion
./scripts/run_docker.sh

# modify the script for running others
```

## Code Format

code format based on Google style

```sh
./batch_format.sh
```

## Docs

* Requirements
```sh
sudo apt install graphviz
sudo apt install doxygen
```

* Generate
```sh
# output in html and latex dir
doxygen Doxygen.config
```


## Community

* Welcom to join [the Discord channel #multi-sensor-fusion](https://discord.gg/2RV2vKmdpa)