Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/chainer/chainer
A flexible framework of neural networks for deep learning
https://github.com/chainer/chainer
chainer cuda cudnn cupy deep-learning gpu machine-learning neural-network neural-networks numpy python
Last synced: 5 days ago
JSON representation
A flexible framework of neural networks for deep learning
- Host: GitHub
- URL: https://github.com/chainer/chainer
- Owner: chainer
- License: mit
- Created: 2015-06-05T05:50:37.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2023-08-28T17:18:20.000Z (over 1 year ago)
- Last Synced: 2024-10-29T11:44:03.453Z (2 months ago)
- Topics: chainer, cuda, cudnn, cupy, deep-learning, gpu, machine-learning, neural-network, neural-networks, numpy, python
- Language: Python
- Homepage: https://chainer.org
- Size: 51.2 MB
- Stars: 5,889
- Watchers: 283
- Forks: 1,367
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- my-awesome-starred - chainer - A flexible framework of neural networks for deep learning (Python)
- awesome-python-machine-learning-resources - GitHub - 0% open · ⏱️ 29.06.2022): (机器学习框架)
- awesome-python-machine-learning - Chainer - Chainer is a Python-based deep learning framework aiming at flexibility. (Uncategorized / Uncategorized)
- awesome-list - Chainer - A flexible framework of neural networks for deep learning. (Deep Learning Framework / High-Level DL APIs)
- StarryDivineSky - chainer/chainer - by-run**方法(也称为动态计算图)提供自动微分API,以及面向对象的、高级的API来构建和训练神经网络。它还使用[CuPy](https://github.com/cupy/cupy)支持CUDA/cuDNN,以实现高性能训练和推理。有关Chainer的更多详细信息,请参阅上面列出的文档和资源,并加入论坛、Slack和Twitter上的社区。 (其他_机器学习与深度学习)
README
***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.***
----
# Chainer: A deep learning framework
[![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer)
[![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer)
[![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer)
[![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer)
[![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable)
[![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)[**Website**](https://chainer.org/)
| [**Docs**](https://docs.chainer.org/en/stable/)
| [**Install Guide**](https://docs.chainer.org/en/stable/install.html)
| **Tutorials** ([ja](https://tutorials.chainer.org/ja/))
| **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer))
| [**Concepts**](https://docs.chainer.org/en/stable/guides/)
| [**ChainerX**](#chainerx)**Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp))
| **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack))
| **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP))*Chainer* is a Python-based deep learning framework aiming at flexibility.
It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks.
It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference.
For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter.## Installation
*For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).*
To install Chainer, use `pip`.
```sh
$ pip install chainer
```To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required.
Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html).## Docker image
We are providing the official Docker image.
This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support.```
$ nvidia-docker run -it chainer/chainer /bin/bash
```## Contribution
See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html).
## ChainerX
See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html).
## License
MIT License (see `LICENSE` file).
## More information
- [Release notes](https://github.com/chainer/chainer/releases)
## References
Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019.
[URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt)Tokui, S., Oono, K., Hido, S. and Clayton, J.,
Chainer: a Next-Generation Open Source Framework for Deep Learning,
*Proceedings of Workshop on Machine Learning Systems(LearningSys) in
The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015)
[URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt)Akiba, T., Fukuda, K. and Suzuki, S.,
ChainerMN: Scalable Distributed Deep Learning Framework,
*Proceedings of Workshop on ML Systems in
The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017)
[URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt)