An open API service indexing awesome lists of open source software.

https://github.com/chakki-works/coarij

Corpus of Annual Reports in Japan
https://github.com/chakki-works/coarij

corpus dataset finance natural-language-processing

Last synced: 6 months ago
JSON representation

Corpus of Annual Reports in Japan

Awesome Lists containing this project

README

          

# CoARiJ: Corpus of Annual Reports in Japan

[![PyPI version](https://badge.fury.io/py/coarij.svg)](https://badge.fury.io/py/coarij)
[![Build Status](https://travis-ci.org/chakki-works/coarij.svg?branch=master)](https://travis-ci.org/chakki-works/coarij)
[![codecov](https://codecov.io/gh/chakki-works/coarij/branch/master/graph/badge.svg)](https://codecov.io/gh/chakki-works/coarij)

We organized Japanese financial reports to encourage applying NLP techniques to financial analytics.

## Dataset

The corpora are separated to each financial years.

master version.

| fiscal_year | Raw file version (F) | Text extracted version (E) |
|-------------|-------------------|-----------------|
| 2014 | [.zip (9.3GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2014.zip) | [.zip (269.9MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2014.zip) |
| 2015 | [.zip (9.8GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2015.zip) | [.zip (291.1MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2015.zip) |
| 2016 | [.zip (10.2GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2016.zip) | [.zip (334.7MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2016.zip) |
| 2017 | [.zip (9.1GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2017.zip) | [.zip (309.4MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2017.zip) |
| 2018 | [.zip (10.5GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2018.zip) | [.zip (260.9MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2018.zip) |

* financial data is from [決算短信情報](http://db-ec.jpx.co.jp/category/C027/).
* We use non-cosolidated data if it exist.
* stock data is from [月間相場表(内国株式)](http://db-ec.jpx.co.jp/category/C021/STAT1002.html).
* `close` is fiscal period end and `open` is 1 year before of it.

### Past release

* [v1.0](https://github.com/chakki-works/CoARiJ/blob/master/releases/v1.0.md)

### Statistics

| fiscal_year | number_of_reports | has_csr_reports | has_financial_data | has_stock_data |
|-------------|-------------------|-----------------|--------------------|----------------|
| 2014 | 3,724 | 92 | 3,583 | 3,595 |
| 2015 | 3,870 | 96 | 3,725 | 3,751 |
| 2016 | 4,066 | 97 | 3,924 | 3,941 |
| 2017 | 3,578 | 89 | 3,441 | 3,472 |
| 2018 | 3,513 | 70 | 2,893 | 3,413 |

### File structure

#### Raw file version (`--kind F`)

The structure of dataset is following.

```
chakki_esg_financial_{year}.zip
└──{year}
├── documents.csv
└── docs/
```

`docs` includes XBRL and PDF file.

* XBRL file of annual reports (files are retrieved from [EDINET](http://disclosure.edinet-fsa.go.jp/)).
* PDF file of CSR reports (additional content).

`documents.csv` has metadata like following. Please refer the detail at [Wiki](https://github.com/chakki-works/CoARiJ/wiki/Columns-on-the-file).

* edinet_code: `E0000X`
* filer_name: `XXX株式会社`
* fiscal_year: `201X`
* fiscal_period: `FY`
* doc_path: `docs/S000000X.xbrl`
* csr_path: `docs/E0000X_201X_JP_36.pdf`

#### Text extracted version (`--kind E`)

Text extracted version includes `txt` files that match each part of an annual report.
The extracted parts are defined at [`xbrr`](https://github.com/chakki-works/xbrr/blob/master/docs/edinet.md).

```
chakki_esg_financial_{year}_extracted.zip
└──{year}
├── documents.csv
└── docs/
```

## Tool

You can download dataset by command line tool.

```
pip install coarij
```

Please refer the usage by `--` (using [fire](https://github.com/google/python-fire)).

```
coarij --
```

Example command.

```bash
# Download raw file version dataset of 2014.
coarij download --kind F --year 2014

# Extract business.overview_of_result part of TIS.Inc (sec code=3626).
coarij extract business.overview_of_result --sec_code 3626

# Tokenize text by Janome (`janome` or `sudachi` is supported).
pip install janome
coarij tokenize --tokenizer janome

# Show tokenized result (words are separated by \t).
head -n 5 data/processed/2014/docs/S100552V_business_overview_of_result_tokenized.txt
1 【 業績 等 の 概要 】
( 1 ) 業績
当 連結 会計 年度 における 我が国 経済 は 、 消費 税率 引上げ に 伴う 駆け込み 需要 の 反動 や 海外 景気 動向 に対する 先行き 懸念 等 から 弱い 動き も 見 られ まし た が 、 企業 収益 の 改善 等 により 全体 ...
```

If you want to download latest dataset, please specify `--version master` when download the data.

* About the parsable part, please refer the [`xbrr`](https://github.com/chakki-works/xbrr/blob/master/docs/edinet.md).

You can use `Ledger` to select your necessary file from overall CoARiJ dataset.

```python
from coarij.storage import Storage

storage = Storage("your/data/directory")
ledger = storage.get_ledger()
collected = ledger.collect(edinet_code="E00021")
```