Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/chakki-works/seqeval
A Python framework for sequence labeling evaluation(named-entity recognition, pos tagging, etc...)
https://github.com/chakki-works/seqeval
conlleval deep-learning machine-learning named-entity-recognition natural-language-processing python sequence-labeling sequence-labeling-evaluation
Last synced: 2 days ago
JSON representation
A Python framework for sequence labeling evaluation(named-entity recognition, pos tagging, etc...)
- Host: GitHub
- URL: https://github.com/chakki-works/seqeval
- Owner: chakki-works
- License: mit
- Created: 2018-02-15T00:02:36.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-08-28T11:35:51.000Z (4 months ago)
- Last Synced: 2024-10-29T15:09:42.351Z (about 1 month ago)
- Topics: conlleval, deep-learning, machine-learning, named-entity-recognition, natural-language-processing, python, sequence-labeling, sequence-labeling-evaluation
- Language: Python
- Homepage:
- Size: 180 KB
- Stars: 1,092
- Watchers: 9
- Forks: 129
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-ml-python-packages - seqeval
- awesome-ner - seqeval
README
# seqeval
seqeval is a Python framework for sequence labeling evaluation.
seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.This is well-tested by using the Perl script [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt),
which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.## Support features
seqeval supports following schemes:
- IOB1
- IOB2
- IOE1
- IOE2
- IOBES(only in strict mode)
- BILOU(only in strict mode)and following metrics:
| metrics | description |
|---|---|
| accuracy_score(y\_true, y\_pred) | Compute the accuracy. |
| precision_score(y\_true, y\_pred) | Compute the precision. |
| recall_score(y\_true, y\_pred) | Compute the recall. |
| f1_score(y\_true, y\_pred) | Compute the F1 score, also known as balanced F-score or F-measure. |
| classification_report(y\_true, y\_pred, digits=2) | Build a text report showing the main classification metrics. `digits` is number of digits for formatting output floating point values. Default value is `2`. |## Usage
seqeval supports the two evaluation modes. You can specify the following mode to each metrics:
- default
- strictThe default mode is compatible with [conlleval](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt). If you want to use the default mode, you don't need to specify it:
```python
>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> f1_score(y_true, y_pred)
0.50
>>> classification_report(y_true, y_pred)
precision recall f1-score supportMISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```In strict mode, the inputs are evaluated according to the specified schema. The behavior of the strict mode is different from the default one which is designed to simulate conlleval. If you want to use the strict mode, please specify `mode='strict'` and `scheme` arguments at the same time:
```python
>>> from seqeval.scheme import IOB2
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score supportMISC 0.00 0.00 0.00 1
PER 1.00 1.00 1.00 1micro avg 0.50 0.50 0.50 2
macro avg 0.50 0.50 0.50 2
weighted avg 0.50 0.50 0.50 2
```A minimum case to explain differences between the default and strict mode:
```python
>>> from seqeval.metrics import classification_report
>>> from seqeval.scheme import IOB2
>>> y_true = [['B-NP', 'I-NP', 'O']]
>>> y_pred = [['I-NP', 'I-NP', 'O']]
>>> classification_report(y_true, y_pred)
precision recall f1-score support
NP 1.00 1.00 1.00 1
micro avg 1.00 1.00 1.00 1
macro avg 1.00 1.00 1.00 1
weighted avg 1.00 1.00 1.00 1
>>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
precision recall f1-score support
NP 0.00 0.00 0.00 1
micro avg 0.00 0.00 0.00 1
macro avg 0.00 0.00 0.00 1
weighted avg 0.00 0.00 0.00 1
```## Installation
To install seqeval, simply run:
```bash
pip install seqeval
```## License
[MIT](https://github.com/chakki-works/seqeval/blob/master/LICENSE)
## Citation
```tex
@misc{seqeval,
title={{seqeval}: A Python framework for sequence labeling evaluation},
url={https://github.com/chakki-works/seqeval},
note={Software available from https://github.com/chakki-works/seqeval},
author={Hiroki Nakayama},
year={2018},
}
```