https://github.com/changwoolee/wgan-gp-tensorflow
Tensorflow Implementation of Paper "Improved Training of Wasserstein GANs"
https://github.com/changwoolee/wgan-gp-tensorflow
deep-learning deep-neural-networks gan generative-adversarial-network python tensorflow wgan wgan-gp
Last synced: 25 days ago
JSON representation
Tensorflow Implementation of Paper "Improved Training of Wasserstein GANs"
- Host: GitHub
- URL: https://github.com/changwoolee/wgan-gp-tensorflow
- Owner: changwoolee
- License: mit
- Created: 2018-04-20T05:05:58.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-20T05:27:00.000Z (about 7 years ago)
- Last Synced: 2025-04-19T08:34:21.166Z (about 1 month ago)
- Topics: deep-learning, deep-neural-networks, gan, generative-adversarial-network, python, tensorflow, wgan, wgan-gp
- Language: Python
- Size: 14.6 KB
- Stars: 24
- Watchers: 2
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# WGAN-GP-tensorflow
Tensorflow implementation of paper ["Improved Training of Wasserstein GANs"](https://arxiv.org/abs/1704.00028).

* 0 epoch

* 25 epoch

* 50 epoch

* 100 epoch

* 150 epoch

## Prerequisites
- Python 2.7 or 3.5
- Tensorflow 1.3+
- SciPy
- Aligned&Cropped celebA dataset([download](https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADSNUu0bseoCKuxuI5ZeTl1a/Img?dl=0))
- (Optional) moviepy (for visualization)## Usage
* Download aligned&cropped celebA dataset([link](https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADSNUu0bseoCKuxuI5ZeTl1a/Img?dl=0)) and unzip at ./data/img_align_celeba
* Train:
```
$ python main.py --train
```Or you can set some arguments like:
```
$ python main.py --dataset=celebA --max_epoch=50 --learning_rate=1e-4 --train
```* Test:
```
$ python main.py
```## Acknowledge
Based on the implementation [carpedm20/DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow), [LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow](https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow), [shekkizh/WassersteinGAN.tensorflow](https://github.com/shekkizh/WassersteinGAN.tensorflow) and [igul222/improved_wgan_training](https://github.com/igul222/improved_wgan_training).