Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/chaoses-ib/statistics


https://github.com/chaoses-ib/statistics

data-mining data-science maching-learning statistics

Last synced: 2 months ago
JSON representation

Awesome Lists containing this project

README

        

# [Statistics](Statistics.md)
- [Libraries](Libraries.md)

## [Probability Theory](Probability/README.md)
- [Bayes' Theorem](Probability/Bayes'%20Theorem.md)

## Descriptive Statistics
- Dispersion
- [Variance](Descriptive/Dispersion/Variance.md)

## [Statistical Inference](Inference/README.md)
- [Statistical Distances](Inference/Distances/README.md)
- [Cross-entropy](Inference/Distances/Cross-entropy.md)
- [Probability Density Estimation](Inference/Probability%20Density/README.md)
- [Kernel Density Estimation](Inference/Probability%20Density/Kernel%20Density%20Estimation.md)
- [Bayesian Inference](Inference/Bayesian/README.md)
- [Conjugate Priors](Inference/Bayesian/Conjugate%20Priors.md)
- [Maximum A Posteriori Estimation](Inference/Bayesian/Maximum%20A%20Posteriori%20Estimation.md)
- [Probabilistic Graphical Models](Inference/Graphical/README.md)
- [Directed Probabilistic Graphical Models](Inference/Graphical/Directed/README.md)
- [Undirected Probabilistic Graphical Models](Inference/Graphical/Undirected/README.md)
- [Conditional Random Fields](Inference/Graphical/Undirected/Conditional/README.md)
- [使用线性条件随机场实现中文分词](Inference/Graphical/Undirected/Conditional/使用线性条件随机场实现中文分词.md)

## [Multivariate Statistics](Multivariate/README.md)
- [Random Vectors and Matrices](Multivariate/Random%20Vectors%20and%20Matrices.md)
- [Multivariate Normal Distribution](Multivariate/Multivariate%20Normal%20Distribution.md)

### [Data Preprocessing](Multivariate/Data%20Preprocessing/README.md)
- [Data Quality](Multivariate/Data%20Preprocessing/Data%20Quality/README.md)
- [Missing Values](Multivariate/Data%20Preprocessing/Data%20Quality/Missing%20Values.md)
- [Dimensionality Reduction](Multivariate/Data%20Preprocessing/Dimensionality%20Reduction/README.md)
- [Principal Component Analysis](Multivariate/Data%20Preprocessing/Dimensionality%20Reduction/Principal%20Component%20Analysis.md)
- [UV-Decomposition](Multivariate/Data%20Preprocessing/Dimensionality%20Reduction/UV-Decomposition.md)
- [Manifold Learning](Multivariate/Data%20Preprocessing/Dimensionality%20Reduction/Manifold%20Learning/README.md)
- [Multidimensional Scaling](Multivariate/Data%20Preprocessing/Dimensionality%20Reduction/Manifold%20Learning/Multidimensional%20Scaling.md)
- [Feature Engineering](Multivariate/Data%20Preprocessing/Feature%20Engineering/README.md)
- [Polynomial Feature Transform](Multivariate/Data%20Preprocessing/Feature%20Engineering/Polynomial%20Feature%20Transform.md)
- [Featuretools](Multivariate/Data%20Preprocessing/Feature%20Engineering/Featuretools.md)

### Finding Similar Items
- [Measures of Similarity and Dissimilarity](Multivariate/Finding%20Similar%20Items/Measures%20of%20Similarity%20and%20Dissimilarity.md)
- [Binary Similarity Measures](Multivariate/Finding%20Similar%20Items/Binary%20Similarity%20Measures.md)
- [Edit Distance](Multivariate/Finding%20Similar%20Items/Edit%20Distance/README.md)
- [Levenshtein Distance](Multivariate/Finding%20Similar%20Items/Edit%20Distance/Levenshtein%20Distance.md)
- [Near-Neighbor Search](Multivariate/Finding%20Similar%20Items/Near-Neighbor%20Search.md)
- [Shingling of Documents](Multivariate/Finding%20Similar%20Items/Shingling%20of%20Documents.md)
- [Similarity-Preserving Summaries of Sets](Multivariate/Finding%20Similar%20Items/Similarity-Preserving%20Summaries%20of%20Sets.md)
- [Locality-Sensitive Hashing for Documents](Multivariate/Finding%20Similar%20Items/Locality-Sensitive%20Hashing%20for%20Documents.md)

### [Clustering](Multivariate/Clustering/README.md)
- Representative-based Clustering
- [K-means Clustering](Multivariate/Clustering/Representative-based/K-means.md)
- [Expectation-Maximization Clustering](Multivariate/Clustering/Representative-based/Expectation-Maximization%20Clustering.md)
- Density-based Clustering
- [DBSCAN](Multivariate/Clustering/Density-based/DBSCAN.md)
- [Hierarchical Clustering](Multivariate/Clustering/Hierarchical/README.md)
- [Agglomerative Hierarchical Clustering](Multivariate/Clustering/Hierarchical/Agglomerative%20Hierarchical%20Clustering.md)
- Fuzzy Clustering
- [Fuzzy C-means Clustering](Multivariate/Clustering/Fuzzy/Fuzzy%20C-means%20Clustering.md)
- [Clustering Validation](Multivariate/Clustering/Validation/README.md)
- [External Measures](Multivariate/Clustering/Validation/External%20Measures.md)
- [Internal Measures](Multivariate/Clustering/Validation/Internal%20Measures.md)
- [Relative Measures](Multivariate/Clustering/Validation/Relative%20Measures.md)

### [Classification](Multivariate/Classification/README.md)
- [Classification Assessment](Multivariate/Classification/Classification%20Assessment/README.md)
- [Performance Measures](Multivariate/Classification/Classification%20Assessment/Performance%20Measures.md)
- [Positive and Negative Predictive Values](Multivariate/Classification/Classification%20Assessment/Positive%20and%20Negative%20Predictive%20Values.md)
- [Model Evaluation](Multivariate/Classification/Classification%20Assessment/Model%20Evaluation.md)
- [Model Overfitting](Multivariate/Classification/Classification%20Assessment/Model%20Overfitting.md)
- [Receiver Operating Characteristic Analysis](Multivariate/Classification/Classification%20Assessment/Receiver%20Operating%20Characteristic%20Analysis.md)
- Probabilistic Classification
- [Bayes Classifier](Multivariate/Classification/Probabilistic/Bayes%20Classifier.md)
- [Decision Tree Classifier](Multivariate/Classification/Decision%20Tree%20Classifier/README.md)
- [Random Forest](Multivariate/Classification/Decision%20Tree%20Classifier/Random%20Forest.md)
- [Support Vector Machine](Multivariate/Classification/Support%20Vector%20Machine/README.md)

### [Regression Analysis](Multivariate/Regression/README.md)
- Linear Regression
- [Logistic Regression](Multivariate/Regression/Logistic/README.md)
- [Multinomial Logistic Regression](Multivariate/Regression/Logistic/Multinomial.md) ([Python](Multivariate/Regression/Logistic/Multinomial.ipynb))

### [Link Analysis](Multivariate/Link%20Analysis/README.md)
- [Web Graph](Multivariate/Link%20Analysis/Web%20Graph.md)
- [PageRank](Multivariate/Link%20Analysis/PageRank/README.md)
- [Topic-Sensitive PageRank](Multivariate/Link%20Analysis/PageRank/Topic-Sensitive%20PageRank.md)
- [Link Spam](Multivariate/Link%20Analysis/PageRank/Link%20Spam.md)
- [Hubs and Authorities](Multivariate/Link%20Analysis/PageRank/Hubs%20and%20Authorities.md)

### Association Analysis
- [Itemset and Association Rule](Multivariate/Association%20Analysis/Itemset%20and%20Association%20Rule.md)
- [Itemset Mining](Multivariate/Association%20Analysis/Itemset%20Mining.md)
- [Association Rule Mining](Multivariate/Association%20Analysis/Association%20Rule%20Mining.md)
- [Compact Representation of Itemsets](Multivariate/Association%20Analysis/Compact%20Representation%20of%20Itemsets.md)
- Assessment
- [Objective Measures of Interestingness](Multivariate/Association%20Analysis/Assessment/Objective%20Measures%20of%20Interestingness.md)

### [Recommendation Systems](Multivariate/Recommendation%20Systems/README.md)
- [Content-Based Recommendations](Multivariate/Recommendation%20Systems/Content-Based%20Recommendations/README.md)
- [Collaborative Filtering](Multivariate/Recommendation%20Systems/Collaborative%20Filtering/README.md)
- [Clustering Users and Items](Multivariate/Recommendation%20Systems/Collaborative%20Filtering/Clustering%20Users%20and%20Items.md)
- [Resource](Multivariate/Recommendation%20Systems/Resource.md)
- [Services](Multivariate/Recommendation%20Systems/Services.md)