Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/charleslf2/visionner
Visionner turn raw image data into numpy array, more suitable for deep learning task
https://github.com/charleslf2/visionner
computer-vision dataset image machine-learning python python3
Last synced: 4 days ago
JSON representation
Visionner turn raw image data into numpy array, more suitable for deep learning task
- Host: GitHub
- URL: https://github.com/charleslf2/visionner
- Owner: charleslf2
- Created: 2023-01-09T12:26:54.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-07-06T09:46:43.000Z (over 1 year ago)
- Last Synced: 2025-02-02T10:32:50.083Z (17 days ago)
- Topics: computer-vision, dataset, image, machine-learning, python, python3
- Language: Python
- Homepage: https://charleslf2.github.io/visionner/
- Size: 227 KB
- Stars: 10
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Installation
- step 1```bash
git clone https://github.com/charleslf2/visionner
```- step 2
```bash
cd visionner
```
- step 3```bash
py setup.py install
```# Usage
```python3
>>> from visionner.core import DatasetImporter
>>> your_dataset=DatasetImporter("path/to/your/dataset/", size=(28, 28))
```
```python3
>>> from visionner.core import SupervisedImporter
>>> features, labels= SupervisedImporter("path/to/your/dataset", categories=["cat", "dog"], size=(28,28))
```
```python3
### normalize your dataset
>>> from visionner.core import DatasetNormalizer
>>> your_normalized_dataset=DatasetNormalizer(your_dataset)
```
```python3
### create a trainset and a testset
>>> from visionner.core import TrainTestSpliter
>>> x_train, x_test=TrainTestSpliter(dataset, test_size=0.2)
```
```python3
### visualize the first image of your dataset
>>> import matplotlib.pyplot as plt
>>> plt.imshow(your_dataset[0])
>>> plt.show()```
```python3
### save your dataset
>>> from visionner.core import DatasetSaver
>>> DatasetSaver("my_saved_dataset", your_dataset)
```
```python3
### open your dataset
>>> from visionner.core import DatasetOpener
>>> my_saved_dataset=DatasetOpener("my_saved_dataset.npy")
```