Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/charliezcr/Kpop-Data-Analysis
Data analysis about K-pop industry, artists, and companies. Visualized business performances of public K-pop companies and analyzed artist management and international marketing strategies
https://github.com/charliezcr/Kpop-Data-Analysis
data-analysis data-visualization kpop pandas python
Last synced: about 1 month ago
JSON representation
Data analysis about K-pop industry, artists, and companies. Visualized business performances of public K-pop companies and analyzed artist management and international marketing strategies
- Host: GitHub
- URL: https://github.com/charliezcr/Kpop-Data-Analysis
- Owner: charliezcr
- Created: 2021-02-07T01:00:50.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-09-21T06:26:28.000Z (over 3 years ago)
- Last Synced: 2024-08-01T21:55:35.033Z (5 months ago)
- Topics: data-analysis, data-visualization, kpop, pandas, python
- Language: Jupyter Notebook
- Homepage: https://charliezcr.github.io/projects.html#Kpop
- Size: 3.96 MB
- Stars: 14
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- starred - charliezcr/Kpop-Data-Analysis - Data analysis about K-pop industry, artists, and companies. Visualized business performances of public K-pop companies and analyzed artist management and international marketing strategies (Jupyter Notebook)
README
# Kpop Data Analysis
## Project Overview
Kpop refers to the music genre and its idol industry originated in South Korea. I gathered data of Kpop from 1992-03-23 (the birthday of Kpop) to 2021-01-11 including information of all major Kpop idols from [K-Pop Database](https://dbkpop.com/), analyzed the statistics about Kpop Industry.
## Contents
1. Part.1 is an exploratory data analysis of Kpop industry
Here are python [notebook](https://github.com/charliezcr/Kpop-Data-Analysis/blob/main/kda.ipynb) and the [webite](https://charliezcr.github.io/kda.html) for the code for part.1Here is the reader-friendly [Medium article](https://crzheng97.medium.com/kpop-data-analysis-c88010e40e0d) for part.1 and its [YouTube video](https://youtu.be/NIsDL-QKT3s)
2. Part.2 is an interactive data visualization of Kpop's business performance and strategy
Here are python [notebook](https://github.com/charliezcr/Kpop-Data-Analysis/blob/main/kda2.ipynb) and the [webite](https://charliezcr.github.io/kda2.html) for the code for part.2Here are the inertactive charts of [revenue](https://charliezcr.github.io/Revenues%20of%20Kpop%20Agencies.html) and [net income](https://charliezcr.github.io/Net%20Income%20of%20Kpop%20Agencies.html)
Here is the reader-friendly [Medium article](https://crzheng97.medium.com/analysis-of-kpop-agencies-9a2fd99c891a) for part.2 and its [YouTube video](https://youtu.be/SCZ6co7uuNQ)
3. Part.3 is an interactive data visualzation, a choropleth map of Kpop artists' nationality other than South Korea.
Here are python [notebook](https://github.com/charliezcr/Kpop-Data-Analysis/blob/main/kda4.ipynb) and the [webite](https://charliezcr.github.io/kda4.html) for the code for part.3Here is the [interactive map](https://charliezcr.github.io/countries.html)
4. Part.4 is an analysis of Kpop music videos on YouTube.
Here are python [notebook](https://github.com/charliezcr/Kpop-Data-Analysis/blob/main/kda5.ipynb) and the [webite](https://charliezcr.github.io/kda5.html) for the code for part.4Here is the reader-friendly [Medium article](https://crzheng97.medium.com/analysis-of-kpop-music-video-on-youtube-65816adb2f1) for part.4
5. Part.5 is an analysis of Kpop group size, especially for big groups.
Here are python [notebook](https://github.com/charliezcr/Kpop-Data-Analysis/blob/main/kda6.ipynb) and the [webite](https://charliezcr.github.io/kda6.html) for the code for part.5Here is the reader-friendly [Medium article](https://crzheng97.medium.com/why-kpop-groups-have-so-many-members-2086cf35e98f) for part.5
## Modules
**pip install these modules**
- [pandas](https://pandas.pydata.org/): data processing
- [numpy](https://numpy.org/): linear algebra
- [matplotlib](https://matplotlib.org/): visualization
- [plotly](https://plotly.com/): visualization