Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/charmve/semantic-segmentation-pytorch

PyTorch implementation for Semantic Segmentation, include FCN, U-Net, SegNet, GCN, PSPNet, Deeplabv3, Deeplabv3+, Mask R-CNN, DUC, GoogleNet, and more dataset
https://github.com/charmve/semantic-segmentation-pytorch

charmve computer-vision deep-learning fcn image-classification image-processing mask-rcnn pytorch pytorch-implementation segnet semantic-segmentation unet-pytorch

Last synced: 18 days ago
JSON representation

PyTorch implementation for Semantic Segmentation, include FCN, U-Net, SegNet, GCN, PSPNet, Deeplabv3, Deeplabv3+, Mask R-CNN, DUC, GoogleNet, and more dataset

Awesome Lists containing this project

README

        

# Semantic Segmentation in PyTorch
This repository contains some models for semantic segmentation and the pipeline of training and testing models,
implemented in PyTorch

## Models
1. Vanilla FCN: FCN32, FCN16, FCN8, in the versions of VGG, ResNet and DenseNet respectively
([Fully convolutional networks for semantic segmentation](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf))
2. U-Net ([U-net: Convolutional networks for biomedical image segmentation](https://arxiv.org/pdf/1505.04597))
3. SegNet ([Segnet: A deep convolutional encoder-decoder architecture for image segmentation](https://arxiv.org/pdf/1511.00561))
4. PSPNet ([Pyramid scene parsing network](https://arxiv.org/pdf/1612.01105))
5. GCN ([Large Kernel Matters](https://arxiv.org/pdf/1703.02719))
6. DUC, HDC ([understanding convolution for semantic segmentation](https://arxiv.org/pdf/1702.08502.pdf))
7. Mask-RCNN ([paper](https://arxiv.org/abs/1703.06870), [code from FAIR](https://github.com/facebookresearch/Detectron), [code PyTorch](https://github.com/multimodallearning/pytorch-mask-rcnn))

## Requirement
1. PyTorch 0.2.0
2. TensorBoard for PyTorch. [Here](https://github.com/lanpa/tensorboard-pytorch) to install
3. Some other libraries (find what you miss when running the code :-P)

## Preparation
1. Go to ``*models*`` directory and set the path of pretrained models in ``*config.py*``
2. Go to ``*datasets*`` directory and do following the ``README``

## TODO
I'm going to implement The Image Segmentation Paper Top10 Net in PyTorch firstly.

- [ ] DeepLab v3
- [ ] RefineNet
- [ ] ImageNet
- [ ] GoogleNet
- [ ] More dataset (e.g. ADE)

## Citation
Use this bibtex to cite this repository:
```
@misc{PyTorch for Semantic Segmentation in Action,
title={Some Implementation of Semantic Segmentation in PyTorch},
author={Charmve},
year={2020.10},
publisher={Github},
journal={GitHub repository},
howpublished={\url{https://github.com/Charmve/Semantic-Segmentation-PyTorch}},
}
```