An open API service indexing awesome lists of open source software.

https://github.com/chen0040/java-clustering

Package provides java implementation of various clustering algorithms
https://github.com/chen0040/java-clustering

clustering-algorithm dbscan dbscan-clustering hierarchical-clustering k-means

Last synced: 3 months ago
JSON representation

Package provides java implementation of various clustering algorithms

Awesome Lists containing this project

README

          

# java-clustering
Package provides java implementation of various clustering algorithms

[![Build Status](https://travis-ci.org/chen0040/java-clustering.svg?branch=master)](https://travis-ci.org/chen0040/java-clustering) [![Coverage Status](https://coveralls.io/repos/github/chen0040/java-clustering/badge.svg?branch=master)](https://coveralls.io/github/chen0040/java-clustering?branch=master)

# Features

* Hierarchical Clustering
* KMeans Clustering
* DBSCAN
* Single Linkage Clustering

# Install

Add the following dependency to your POM file:

```xml

com.github.chen0040
java-clustering
1.0.3

```

### Spatial Segmentation using Hierarchical Clustering

The following sample code shows how to use hierarchical clustering to separate two clusters:

```java
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("designed")
.end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("designed").generate((name, index) -> 0.0)
.end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, -2))
.forColumn("c2").generate((name, index) -> rand(-2, -4))
.forColumn("designed").generate((name, index) -> 1.0)
.end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 50);
data = positiveSampler.sample(data, 50);

System.out.println(data.head(10));

HierarchicalClustering algorithm = new HierarchicalClustering();
algorithm.setLinkage(linkageCriterion);
algorithm.setClusterCount(2);

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
DataRow tuple = learnedData.row(i);
String clusterId = tuple.getCategoricalTargetCell("cluster");
System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}
```

### Spatial Segmentation using EM Clustering

The following sample code shows how to use EM clustering to separate two clusters:

```java
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("designed")
.end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("designed").generate((name, index) -> 0.0)
.end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, -2))
.forColumn("c2").generate((name, index) -> rand(-2, -4))
.forColumn("designed").generate((name, index) -> 1.0)
.end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 50);
data = positiveSampler.sample(data, 50);

System.out.println(data.head(10));

EMClustering algorithm = new EMClustering();
algorithm.setSigma0(1.5);
algorithm.setClusterCount(2);

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
DataRow tuple = learnedData.row(i);
String clusterId = tuple.getCategoricalTargetCell("cluster");
System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}
```

### Spatial Segmentation using Single Linkage Clustering

The following sample code shows how to use single linkage clustering to separate two clusters:

```java
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("designed")
.end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("designed").generate((name, index) -> 0.0)
.end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, -2))
.forColumn("c2").generate((name, index) -> rand(-2, -4))
.forColumn("designed").generate((name, index) -> 1.0)
.end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 50);
data = positiveSampler.sample(data, 50);

System.out.println(data.head(10));

SingleLinkageClustering algorithm = new SingleLinkageClustering();
algorithm.setClusterCount(2);

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
DataRow tuple = learnedData.row(i);
String clusterId = tuple.getCategoricalTargetCell("cluster");
System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}
```

### Spatial Segmentation using DBSCAN

The following sample code shows how to use DBSCAN to perform clustering:

```java
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("designed")
.end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("designed").generate((name, index) -> 0.0)
.end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, -2))
.forColumn("c2").generate((name, index) -> rand(-2, -4))
.forColumn("designed").generate((name, index) -> 1.0)
.end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 200);
data = positiveSampler.sample(data, 200);

System.out.println(data.head(10));

DBSCAN algorithm = new DBSCAN();
algorithm.setEpsilon(0.5);

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
DataRow tuple = learnedData.row(i);
String clusterId = tuple.getCategoricalTargetCell("cluster");
System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}

```

### Image Segmentation (Clustering) using KMeans

The following sample code shows how to use FuzzyART to perform image segmentation:

```java
BufferedImage img= ImageIO.read(FileUtils.getResource("1.jpg"));

DataFrame dataFrame = ImageDataFrameFactory.dataFrame(img);

KMeans cluster = new KMeans();
DataFrame learnedData = cluster.fitAndTransform(dataFrame);

for(int i=0; i classColors = new ArrayList();
for(int i=0; i < 5; ++i){
for(int j=0; j < 5; ++j){
classColors.add(ImageDataFrameFactory.get_rgb(255, rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)));
}
}

BufferedImage segmented_image = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
for(int x=0; x < img.getWidth(); x++)
{
for(int y=0; y < img.getHeight(); y++)
{
int rgb = img.getRGB(x, y);

DataRow tuple = ImageDataFrameFactory.getPixelTuple(x, y, rgb);

int clusterIndex = cluster.transform(tuple);

rgb = classColors.get(clusterIndex % classColors.size());

segmented_image.setRGB(x, y, rgb);
}
}
```