https://github.com/chen0040/java-reinforcement-learning
Package provides java implementation of reinforcement learning algorithms such Q-Learn, R-Learn, SARSA, Actor-Critic
https://github.com/chen0040/java-reinforcement-learning
actor-critic java q-learning reinforcement-learning sarsa sarsa-lambda
Last synced: 5 months ago
JSON representation
Package provides java implementation of reinforcement learning algorithms such Q-Learn, R-Learn, SARSA, Actor-Critic
- Host: GitHub
- URL: https://github.com/chen0040/java-reinforcement-learning
- Owner: chen0040
- License: mit
- Created: 2017-05-06T08:54:13.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-05-18T16:31:13.000Z (over 6 years ago)
- Last Synced: 2024-02-02T17:53:02.548Z (almost 2 years ago)
- Topics: actor-critic, java, q-learning, reinforcement-learning, sarsa, sarsa-lambda
- Language: Java
- Homepage:
- Size: 154 KB
- Stars: 112
- Watchers: 8
- Forks: 41
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-java - Java Reinforcement Learning - Learn、R-Learn、SARSA、Actor-Critic。 (人工智能)
README
# java-reinforcement-learning
Package provides java implementation of reinforcement learning algorithms as described in the book "Reinforcement Learning: An Introduction" by Sutton
[](https://travis-ci.org/chen0040/java-reinforcement-learning) [](https://coveralls.io/github/chen0040/java-reinforcement-learning?branch=master)
# Features
The following reinforcement learning are implemented:
* R-Learn
* Q-Learn
* Q-Learn with eligibility trace
* SARSA
* SARSA with eligibility trace
* Actor-Critic
* Actor-Critic with eligibility trace
The package also support a number of action-selection strategy:
* soft-max
* epsilon-greedy
* greedy
* Gibbs-soft-max

# Install
Add the following dependency to your POM file:
```
com.github.chen0040
java-reinforcement-learning
1.0.5
```
# Application Samples
The application sample of this library can be found in the following repositories:
* [java-reinforcement-learning-tic-tac-toe](https://github.com/chen0040/java-reinforcement-learning-tic-tac-toe)
* [java-reinforcement-learning-flappy-bird](https://github.com/chen0040/java-reinforcement-learning-flappy-bird)
# Usage
### Create Agent
An reinforcement agent, say, Q-Learn agent, can be created by the following java code:
```java
import com.github.chen0040.rl.learning.qlearn.QAgent;
int stateCount = 100;
int actionCount = 10;
QAgent agent = new QAgent(stateCount, actionCount);
```
The agent created has a state map of 100 states, and 10 different actions for its selection.
For Q-Learn and SARSA, the eligibility trace lambda can be enabled by calling:
```java
agent.enableEligibilityTrace(lambda)
```
### Select Action
At each time step, a action can be selected by the agent, by calling:
```java
int actionId = agent.selectAction().getIndex();
```
If you want to limits the number of possible action at each states (say the problem restrict the actions avaliable at different state), then call:
```java
Set actionsAvailableAtCurrentState = world.getActionsAvailable(agent);
int actionTaken = agent.selectAction(actionsAvailableAtCurrentState).getIndex();
```
The agent can also change to a different action-selection policy available in com.github.chen0040.rl.actionselection package, for example, the following code
switch the action selection policy to soft-max:
```java
agent.getLearner().setActionSelection(SoftMaxActionSelectionStrategy.class.getCanonicalName());
```
### State-Action Update
Once the world state has been updated due to the agent's selected action, its internal state-action Q matrix will be updated by calling:
```java
int newStateId = world.update(agent, actionTaken);
double reward = world.reward(agent);
agent.update(actionTaken, newStateId, reward);
```
# Sample code
### Sample code for R-Learn
```java
import com.github.chen0040.rl.learning.rlearn.RAgent;
int stateCount = 100;
int actionCount = 10;
RAgent agent = new RAgent(stateCount, actionCount);
Random random = new Random();
agent.start(random.nextInt(stateCount));
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction().getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
agent.update(actionId, newStateId, reward);
}
```
Alternatively, you can use RLearner if you want to learning after the episode:
```java
class Move {
int oldState;
int newState;
int action;
double reward;
public Move(int oldState, int action, int newState, double reward) {
this.oldState = oldState;
this.newState = newState;
this.reward = reward;
this.action = action;
}
}
int stateCount = 100;
int actionCount = 10;
RLearner agent = new RLearner(stateCount, actionCount);
Random random = new Random();
int currentState = random.nextInt(stateCount));
List> moves = new ArrayList<>();
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction(currentState).getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
int oldStateId = currentState;
moves.add(new Move(oldStateId, actionId, newStateId, reward));
currentState = newStateId;
}
for(int i=moves.size()-1; i >= 0; --i){
Move move = moves.get(i);
agent.update(move.oldState, move.action, move.newState, world.getActionsAvailableAtState(nextStateId), move.reward);
}
```
### Sample code for Q-Learn
```java
import com.github.chen0040.rl.learning.qlearn.QAgent;
int stateCount = 100;
int actionCount = 10;
QAgent agent = new QAgent(stateCount, actionCount);
Random random = new Random();
agent.start(random.nextInt(stateCount));
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction().getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
agent.update(actionId, newStateId, reward);
}
```
Alternatively, you can use QLearner if you want to learning after the episode:
```java
class Move {
int oldState;
int newState;
int action;
double reward;
public Move(int oldState, int action, int newState, double reward) {
this.oldState = oldState;
this.newState = newState;
this.reward = reward;
this.action = action;
}
}
int stateCount = 100;
int actionCount = 10;
QLearner agent = new QLearner(stateCount, actionCount);
Random random = new Random();
int currentState = random.nextInt(stateCount));
List> moves = new ArrayList<>();
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction(currentState).getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
int oldStateId = currentState;
moves.add(new Move(oldStateId, actionId, newStateId, reward));
currentState = newStateId;
}
for(int i=moves.size()-1; i >= 0; --i){
Move move = moves.get(i);
agent.update(move.oldState, move.action, move.newState, move.reward);
}
```
### Sample code for SARSA
```java
import com.github.chen0040.rl.learning.sarsa.SarsaAgent;
int stateCount = 100;
int actionCount = 10;
SarsaAgent agent = new SarsaAgent(stateCount, actionCount);
Random random = new Random();
agent.start(random.nextInt(stateCount));
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction().getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
agent.update(actionId, newStateId, reward);
}
```
Alternatively, you can use SarsaLearner if you want to learning after the episode:
```java
class Move {
int oldState;
int newState;
int action;
double reward;
public Move(int oldState, int action, int newState, double reward) {
this.oldState = oldState;
this.newState = newState;
this.reward = reward;
this.action = action;
}
}
int stateCount = 100;
int actionCount = 10;
SarsaLearner agent = new SarsaLearner(stateCount, actionCount);
Random random = new Random();
int currentState = random.nextInt(stateCount));
List> moves = new ArrayList<>();
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction(currentState).getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
int oldStateId = currentState;
moves.add(new Move(oldStateId, actionId, newStateId, reward));
currentState = newStateId;
}
for(int i=moves.size()-1; i >= 0; --i){
Move next_move = moves.get(i);
if(i != moves.size()-1) {
next_move = moves.get(i+1);
}
Move current_move = moves.get(i);
agent.update(current_move.oldState, current_move.action, current_move.newState, next_move.action, current_move.reward);
}
```
### Sample code for Actor Critic Model
```java
import com.github.chen0040.rl.learning.actorcritic.ActorCriticAgent;
import com.github.chen0040.rl.utils.Vec;
int stateCount = 100;
int actionCount = 10;
ActorCriticAgent agent = new ActorCriticAgent(stateCount, actionCount);
Vec stateValues = new Vec(stateCount);
Random random = new Random();
agent.start(random.nextInt(stateCount));
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction().getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
System.out.println("World state values changed ...");
for(int stateId = 0; stateId < stateCount; ++stateId){
stateValues.set(stateId, random.nextDouble());
}
agent.update(actionId, newStateId, reward, stateValues);
}
```
Alternatively, you can use ActorCriticLearner if you want to learning after the episode:
```java
class Move {
int oldState;
int newState;
int action;
double reward;
public Move(int oldState, int action, int newState, double reward) {
this.oldState = oldState;
this.newState = newState;
this.reward = reward;
this.action = action;
}
}
int stateCount = 100;
int actionCount = 10;
SarsaLearner agent = new SarsaLearner(stateCount, actionCount);
Random random = new Random();
int currentState = random.nextInt(stateCount));
List> moves = new ArrayList<>();
for(int time=0; time < 1000; ++time){
int actionId = agent.selectAction(currentState).getIndex();
System.out.println("Agent does action-"+actionId);
int newStateId = world.update(agent, actionId);
double reward = world.reward(agent);
System.out.println("Now the new state is " + newStateId);
System.out.println("Agent receives Reward = "+reward);
int oldStateId = currentState;
moves.add(new Move(oldStateId, actionId, newStateId, reward));
currentState = newStateId;
}
for(int i=moves.size()-1; i >= 0; --i){
Move next_move = moves.get(i);
if(i != moves.size()-1) {
next_move = moves.get(i+1);
}
Move current_move = moves.get(i);
agent.update(current_move.oldState, current_move.action, current_move.newState, next_move.action, current_move.reward);
}
```
### Save and Load RL models
To save the trained RL model (say QLeanrer):
```java
QLearner learner = new QLearner(stateCount, actionCount);
train(learner);
String json = learner.toJson();
```
To load the trained RL model from json:
```java
QLearner learner = QLearn.fromJson(json);
```