https://github.com/chendrag/cep-energy-guided-diffusion
Official codebase for Exact Energy-Guided Diffusion Sampling via Contrastive Energy Prediction (ICML 2023)
https://github.com/chendrag/cep-energy-guided-diffusion
cep diffusion energy guided offline qgpo reinforcement-learning sampling
Last synced: 2 months ago
JSON representation
Official codebase for Exact Energy-Guided Diffusion Sampling via Contrastive Energy Prediction (ICML 2023)
- Host: GitHub
- URL: https://github.com/chendrag/cep-energy-guided-diffusion
- Owner: ChenDRAG
- License: mit
- Created: 2023-03-31T14:20:26.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-08-26T06:47:50.000Z (over 1 year ago)
- Last Synced: 2025-03-18T11:11:25.530Z (2 months ago)
- Topics: cep, diffusion, energy, guided, offline, qgpo, reinforcement-learning, sampling
- Language: Python
- Homepage:
- Size: 3.53 MB
- Stars: 46
- Watchers: 1
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: Readme.md
- License: LICENSE
Awesome Lists containing this project
README
# Contrastive Energy Prediction
Official codebase for [Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning](https://arxiv.org/abs/2304.12824).
Contains scripts to reproduce experiments.Cheng Lu\*, Huayu Chen\*, Jianfei Chen†, Hang Su, Chongxuan Li, Jun Zhu†
\*equal contribution, †equal advising

## Instructions
We provide code in two sub-directories: `Offline_RL_2D` containing code for example toy 2D and offline RL experiments and `images` containing code (based on implementations of [openai/guided-diffusion](https://github.com/openai/guided-diffusion)) for Imagenet experiments.
See corresponding READMEs in each folder for instructions; scripts should be run from the respective directories.## Citation
Please cite our paper as:
```
@article{lu2023contrastive,
title={Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning},
author={Lu, Cheng and Chen, Huayu and Chen, Jianfei and Su, Hang and Li, Chongxuan and Zhu, Jun},
journal={arXiv preprint arXiv:2304.12824},
year={2023}
}
```## License
MIT