Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/chewing/libchewing

libchewing - The intelligent phonetic input method library
https://github.com/chewing/libchewing

bopomofo chewing input-method zhuyin

Last synced: about 1 month ago
JSON representation

libchewing - The intelligent phonetic input method library

Awesome Lists containing this project

README

        

```
_ _
___| |__ _____ _(_)_ __ __ _
/ __| '_ \ / _ \ \ /\ / / | '_ \ / _` |
| (__| | | | __/\ V V /| | | | | (_| |
\___|_| |_|\___| \_/\_/ |_|_| |_|\__, |
|___/
https://chewing.im/
```

# libchewing - The intelligent phonetic input method library

The Chewing (酷音) is an intelligent phonetic input method (Zhuyin/Bopomofo)
and is one of the most popular choices for Traditional Chinese users. Chewing
was inspired by other proprietary intelligent Zhuyin input methods on Microsoft
Windows, namely Wang-Xin by Eten, Microsoft New Zhuyin, and Nature Zhuyin (aka
Going). The Chewing developer maintains the project as a fully open-source
effort, positioning it as a leading libre intelligent phonetic solution among
major operating environments.

+ Website:
+ Issue tracker:
+ Mailing lists:
- Development:
- General:
+ Matrix:
- Development:
- General:
+ Build Status:
- Github Actions: [![CI](https://github.com/chewing/libchewing/actions/workflows/ci.yml/badge.svg)](https://github.com/chewing/libchewing/actions/workflows/ci.yml)
- Coverity Scan: [![Coverity Scan Build Status](https://scan.coverity.com/projects/1273/badge.svg)](https://scan.coverity.com/projects/1273)
- Codecov: [![codecov](https://codecov.io/gh/chewing/libchewing/graph/badge.svg?token=r1piKsG5uF)](https://codecov.io/gh/chewing/libchewing)

libchewing releases can be verified with the following [minisign][] public key

RWRzJFnXiLZleAyCIv1talBjyRewelcy9gzYQq9pd3SKSFBPoy57sf5s

[minisign]: https://jedisct1.github.io/minisign/

## Status

### 1. System bridge integration

Chewing has been integrated into various input frameworks in Unix-like systems
and even in Microsoft Windows and Android. On these systems, the Chewing package
is typically divided into two parts: libchewing, which manages the actual
character selection logic, and an input framework interface for display and
preference settings.

+ The active integration:
- [Windows TSF](https://github.com/chewing/windows-chewing-tsf)
- [PIME](https://github.com/EasyIME/PIME)
- [ibus](https://github.com/chewing/ibus-chewing)
- [HIME](https://hime-ime.github.io/)
- [fcitx](https://github.com/fcitx/fcitx5-chewing)
- [Guileless Bopomofo](https://github.com/hiroshiyui/GuilelessBopomofo)
+ The inactive one: [SCIM](https://github.com/chewing/scim-chewing), standalone Microsoft Windows 32/64-bit ([windows-chewing](https://github.com/chewing/windows-chewing)), mozc, [uim](https://github.com/uim/uim-chewing), [ucimf](https://github.com/matlinuxer2/ucimf), JMCCE, xcin, IIIMF, standalone MacOS X (SpaceChewing), Sun's Java Desktop System Input Method Framework, OpenVanilla Input Method Framework (previous than version 1.0), and OXIM.

### 2. support phonetic keyboard layout

- DaChen (default)
- Hsu
- IBM
- Gin-Yieh
- Eten
- Eten 26 keys
- Dvorak
- Dvorak Hsu
- HanYu PinYin
- Taiwan Huayu Luomapinyin
- MPS2 Pinyin
- Colemak-DH ANSI
- Colemak-DH Ortholinear

### 3. External and unmerged projects

libchewing provides a straightforward API and design, enabling third-party
projects to deploy innovative features. Here are some examples:
* [FreeArray](https://github.com/shaform/libfreearray): utilizing libchewing for
selecting phrases of Array input method.
* [CitC](https://code.google.com/p/citc/) (Chewing in the Cloud): extending cloud
services for real-time training and phrase selection based on Chewing IM.
* [KindleChewing: Chewing IM for Kindle DX device](https://github.com/tjwei/KindleChewing)
* [NTNU-Master Input Method](http://rportal.lib.ntnu.edu.tw/items/42d5cd11-5fab-4d27-9f26-d01b80588a82): A faster Chinese IM based on windows-chewing

## Build and Installation

### Prerequisites

The following tools are used to build libchewing. Not all tools are necessary
during building. For example, if the compiler you used is clang, gcc & Visual
Studio are not needed. The versions listed here is the minimal version known to
build libchewing. If any tools you use below this version, libchewing might not
be built.

+ Build tools:
- cmake >= 3.21.0
+ Toolchain / IDE:
- clang >= 3.2 OR gcc >= 4.6.3
- Rust >= 1.77
- Build Tools for Visual Studio 2022 for MSVC build
+ Documentation tools:
- texinfo >= 4.8

### Build via CMake

Use the default preset:

cmake --preset default --install-prefix /usr
cmake --build build
cmake --build build -t test
cmake --build build -t install

Build the rust implementation:

cmake --preset rust-release --install-prefix /usr
cmake --build build
cmake --build build -t test
cmake --build build -t install

Check other supported presets:

cmake --list-presets

### Cross-build

Define a [cmake-toolchains][] file to cross-compile.

Example cross-build instructions:

cmake --preset default --toolchain arm-none-linux-gnueabi.cmake
cmake --build build

[cmake-toolchains]: https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

### Build on Windows with Build Tools for Visual Studio 2022

To build libchewing on Windows and link to other program build from MSVC, you
need to use the MSVC toolchain. To install the build environment:

Open admin prompt `cmd.exe`

winget install Microsoft.VisualStudio.2022.BuildTools
winget install Ninja-build.Ninja
winget install Kitware.CMake
winget install Rustlang.Rustup

Optional development tools

winget install Git.Git
winget install VSCodium.VSCodium

Reboot, then open `Visual Studio Installer` and install C/C++ components.

Open `x64 Native Tools Command Prompt for VS 2022`

rustup default stable
cmake -G Ninja --preset rust

Now you have the build environment for libchewing. You can follow the installation
steps to build with cmake.

### Build on macOS

To build libchewing on macOS, you will need tools listed in the requirements.
Since macOS does not ship with these tools, building them from source can be
a tricky task.

A simple way to install these tools is through [Homebrew](https://brew.sh/),
a package manager for macOS. Once Homebrew is installed, run the following
commands to install the tools you need:

brew install cmake
brew install rustup
rustup default stable

### Minimum Supported Rust Version

To ensure libchewing can be built on various Linux distributions, we use the
minimum rust version available from major distributions' next release branch.
Data source: https://repology.org/project/rust/versions

* Current MSRV: 1.77.0 (Debian unstable)

## Usage

Chewing enables users to input Chinese by its pronunciation, using either
[Bopomofo/Zhuyin][1] or [Hanyu pinyin][2]. It also supports Chinese punctuation
marks, as well as both normal and full-shape numbers and the English alphabet.

The following sections are based on the assumption that you are using the
default configuration. This includes the default/DaChen Bopomofo keyboard layout
on an en\_US keyboard, along with the default key-binding.

### Glossary

Preedit Buffer: This is the area where your typing is stored before being sent
to the applications (such as Firefox) you are using.

Mode: This determines how Chewing responds to keyboard input.

### Editing mode

This mode facilitates the typing of normal Chinese characters and punctuation
and is typically the default working mode.

In this mode, alphanumeric characters and punctuation marks are interpreted as
Bopomofo symbols or punctuation marks. When these symbols form Chinese
characters, the system chooses the most appropriate character based on the
context in the preedit buffer.

Entering complete Chinese sentences is advantageous as it allows the system to
perform auto-correction. To confirm the output, pressing Enter will commit the
characters in the preedit buffer.

In case of errors, characters can be selected by moving the cursor with {Left}
or {Right}, followed by pressing {Down} to enter Candidate Selection mode for
word choice.

Auto-correction for a specific phrase can be overridden by pressing {Tab} at the
end of the sentence.

Memorization of 2, 3, or 4-word phrases is possible by pressing {Ctrl-2},
{Ctrl-3}, or {Ctrl-4} at the phrase's end.

The behavior of the Shift key changes in this mode. Using Shift with an
alphanumeric key outputs corresponding full-shape Chinese symbols if "Easy
Symbol Input" is enabled, or outputs corresponding half-shape lowercase English
alphabets if "Easy Symbol Input" is disabled.

For inputting Chinese symbols, aside from enabling "Easy Symbol Input" mode,
pressing {Ctrl-1} or {`} opens a symbol selection dialog. After selecting the
category, the {Down} key can be used to choose symbols as one would for
characters.

Key binding API name Functionality
----------- -------- -------------
Caps Lock chewing_handle_Capslock Toggle Temporary English sub-mode
Down chewing_handle_Down Enter Candidate Selection mode
Shift-Space chewing_handle_ShiftSpace Toggle Half/Full Shape sub-mode
Enter chewing_handle_Enter Commit the content in preedit buffer
to active application window
Tab chewing_handle_Tab Break the auto-correction.
Ctrl-1 chewing_handle_CtrlNum Open symbol selection dialog
Ctrl-2 chewing_handle_CtrlNum Remember 2-word phrase.
Ctrl-3 chewing_handle_CtrlNum Remember 3-word phrase.
Ctrl-4 chewing_handle_CtrlNum Remember 4-word phrase.

### Half/Full Shape sub-mode

This sub-mode is for inputting half-shape and full-shape characters. Half-shape
characters are essentially normal English characters, while full-shape
characters are stylized symbols that resemble English characters in a larger,
more prominent format.

Key binding API name Functionality
----------- -------- -------------
Shift-Space chewing_handle_ShiftSpace Toggle Half/Full Shape sub-mode

### Temporary English sub-mode

This sub-mode is for temporary English inputting.

Key binding API name Functionality
----------- -------- -------------
Caps Lock chewing_handle_Capslock Toggle Temporary English sub-mode

### Candidate Selection mode

This mode is for choosing the candidate. It first displays the longest phrases
that match the pronunciation, followed by progressively shorter phrases, down
to single characters. Pressing {Down} cycles back to the longest phrases.

For example, after entering "w91o3g4" and pressing {Down}, Chewing displays
the 3-word candidate "台北市". Pressing {Down} again shows the 2-word candidate
"北市". Another press of {Down} brings up 1-word candidates "市" and "是".
Pressing {Down} once more cycles back to the 3-word candidate "台北市".

Key binding API name Functionality
----------- -------- -------------
Down chewing_handle_Down Next bunch of candidates in
different length
Left chewing_handle_Left Previous page of candidates
Right chewing_handle_Right Next page of candidates
1, 2, ...0 chewing_handle_Default Select 1st, 2nd, ... 10th candidate

### Bypass mode

This mode is active whenever the preedit buffer is empty. It enables the use
of movement keys (such as cursor keys and page up/page down) and popular key
bindings (such as Ctrl-A, Ctrl-S).

For a brief overview of using the libchewing APIs, please refer to the
simplified example in the file `contrib/simple-select.c`.

[1]: https://en.wikipedia.org/wiki/Bopomofo
[2]: https://en.wikipedia.org/wiki/Pinyin

## History

Libchewing is derived from the original Chewing input method, a module of XCIN
that focuses on intelligent phonetic (Bopomofo/Zhuyin) processing and was
initially intended for use with the X Window System. This input method module
was developed by Lu-chuan Kung (lckung) and Kang-pen Chen (kpchen), and was
sponsored by Tsan-sheng Hsu from Academia Sinica between 1999 and 2001.

However, the original authors eventually ceased the development of Chewing, and
its strong coupling with XCIN limited its application in broader contexts.
Additionally, there was a similar input method, bimsphone, which was included in
the XCIN server. Like Chewing, bimsphone also lacked a convenient API for
further development. In 2002, Jim Huang, along with others, formed the Chewing
core team and extended the work of Kung and Chen. The Chewing core team renamed
the project "New Chewing" to differentiate their work from the original.
Nevertheless, the English name has remained "Chewing," which is recognized by
various input method frameworks as well.

## License

Except for the following source code, all other source code is licensed under
the GNU LGPL v2.1 (Lesser General Public License v2.1), or (at your option) any
later version. See "COPYING" for details:
* The directory "thirdparty/sqlite-amalgamation" contains the SQLite3 source,
which is in the public domain. For more information, see .
* The file "cmake/FindCurses.cmake" is modified from the CMake source and is
licensed under the BSD 3-Clause license.

## Authors & Contact Information

See "AUTHORS" for details.