Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/chewzzz1014/csc4700-embedded-collision-detection
https://github.com/chewzzz1014/csc4700-embedded-collision-detection
adxl345 arduino collision-detection embedded embedded-systems esp32 fastapi iot machine-learning sklearn thinkspeak
Last synced: about 14 hours ago
JSON representation
- Host: GitHub
- URL: https://github.com/chewzzz1014/csc4700-embedded-collision-detection
- Owner: chewzzz1014
- Created: 2025-01-04T04:38:37.000Z (15 days ago)
- Default Branch: master
- Last Pushed: 2025-01-15T02:23:34.000Z (4 days ago)
- Last Synced: 2025-01-15T03:06:15.051Z (4 days ago)
- Topics: adxl345, arduino, collision-detection, embedded, embedded-systems, esp32, fastapi, iot, machine-learning, sklearn, thinkspeak
- Language: Jupyter Notebook
- Homepage:
- Size: 96.7 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# csc4700-embedded-collision-detection
- Perform binary classification (Collision / No collision) using vehicle acceleration data (x,y,z axis acceleration) collected using accelerometer sensor within 3-seconds timeframe.
- Entries collected within same timeframe is identified by an unique `batch_id`
- 5 entries of data within 3-seconds timeframe form a complete journey. All entries in the same journey will always have same `is_collision` value.
- Display real-time data collected and prediction made on ThinkSpeak dashboard (Note: ThinkSpeak has limitation of 15 seconds between requests sent)# How to launch Trained-Model-Hosting Server
1. Activate virtual env (if any)
```
source venv/Scripts/activate
```
2. Install required packages (for first time user)
```
pip install -r requirements.txt
```
3. Run server
```
uvicorn server:app --host 0.0.0.0 --port 8000
```## Hardware & Software Used
- ADXL345 Accelerometer
- ESP-32 Wifi Module
- ThinkSpeak (Dashboard & store dataset collected)
- Google Colab (ML)## TODO
Code
- [x] Collect accelerometer data and upload to ThinkSpeak
- [x] Preprocess dataset downloaded from ThinkSpeak (2 channel, train data channel and test data channel)
- [x] Train and evaluate classification model
- [x] Host trained model using FastAPI
- [ ] Use trained model to make real-time prediction
- [ ] Display data and graphs on ThinkSpeak dashboardNon-Code
- [x] tinkercard architectural diagram
- [x] flowchart for methodology
- [x] architectural diagram
- [ ] report and presentation slide