An open API service indexing awesome lists of open source software.

https://github.com/chigwell/fin-trend-analyzer

fin-trend-analyzer analyzes financial news and sentiment to identify trends and risks in AI and tech stocks, providing structured insights for quick market assessment.
https://github.com/chigwell/fin-trend-analyzer

ai-stocks analyst-tools automated-parsing bubble-indicators consistent-output financial-news-analysis investor-tools key-risk-factors market-perceptions market-trends pattern-matching reliable-output risk-identification sentiment-analysis sentiment-scores structured-insights technology-stocks text-input-processing trend-summaries

Last synced: 29 days ago
JSON representation

fin-trend-analyzer analyzes financial news and sentiment to identify trends and risks in AI and tech stocks, providing structured insights for quick market assessment.

Awesome Lists containing this project

README

          

# Fin-Trend-Analyzer
[![PyPI version](https://badge.fury.io/py/fin-trend-analyzer.svg)](https://badge.fury.io/py/fin-trend-analyzer)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![Downloads](https://static.pepy.tech/badge/fin-trend-analyzer)](https://pepy.tech/project/fin-trend-analyzer)
[![LinkedIn](https://img.shields.io/badge/LinkedIn-blue)](https://www.linkedin.com/in/eugene-evstafev-716669181/)

Financial Trend Analyzer for AI and Technology Stocks
=====================================================

A Python package that analyzes financial news and sentiment to identify and summarize market trends and risks related to AI and technology stocks.

**Overview**
-----------

Fin-Trend-Analyzer is a linguistic tool that quickly assesses market perceptions and potential bubble indicators by processing text inputs from news articles, reports, or social media posts. It returns structured insights, such as key risk factors, sentiment scores, and trend summaries, using pattern matching to ensure consistent and reliable output.

**Installation**
------------

```bash
pip install fin_trend_analyzer
```

**Usage**
-----

```python
from fin_trend_analyzer import fin_trend_analyzer

response = fin_trend_analyzer(user_input="This week's earnings report was outstanding.")
```

**API Documentation**
-------------------

* `fin_trend_analyzer(user_input: str, api_key: Optional[str] = None, llm: Optional[BaseChatModel] = None) -> List[str]`:
* `user_input`: The user input text to process.
* `api_key`: The API key for LLM7, default is `None` and will use the environment variable `LLM7_API_KEY`.
* `llm`: The langchain LLM instance to use, default is `ChatLLM7` from `langchain_llm7`.

Example using a custom LLM instance (e.g., OpenAI, Anthropic, or Google):
```python
from langchain_openai import ChatOpenAI
from fin_trend_analyzer import fin_trend_analyzer

llm = ChatOpenAI()
response = fin_trend_analyzer(user_input="This week's earnings report was outstanding.", llm=llm)
```

**Rate Limits**
------------

The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If higher rate limits are needed, pass your own API key via environment variable `LLM7_API_KEY` or via passing it directly:
```python
from fin_trend_analyzer import fin_trend_analyzer

response = fin_trend_analyzer(user_input="This week's earnings report was outstanding.", api_key="your_api_key")
```
You can get a free API key by registering at [https://token.llm7.io/](https://token.llm7.io/).

**Author**
------

Eugene Evstafev
* Email: hi@euegne.plus
* GitHub: https://github.com/chigwell