Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/chiragjoshi12/chatbot_with_ollama_and_streamlit

Streamlit Chatbot using Ollama Open Source LLMs
https://github.com/chiragjoshi12/chatbot_with_ollama_and_streamlit

chatbot chiragjoshi llama2 llama3 mistral ollama ollama-chat phi python streamlit

Last synced: 17 days ago
JSON representation

Streamlit Chatbot using Ollama Open Source LLMs

Awesome Lists containing this project

README

        

![Ollama Chatbot with Streamlit](https://raw.githubusercontent.com/chiragjoshi12/chatbot_with_ollama_and_streamlit/main/img/banner.png)

# Ollama Chatbot with Streamlit

This project is a simple chatbot application built using Streamlit and the Ollama language model. The chatbot can interact with users, maintaining a conversation history and streaming responses in real-time.

## Table of Contents
- [Installation](#installation)
- [Usage](#usage)
- [Project Structure](#project-structure)
- [Acknowledgements](#acknowledgements)

## Installation

### Prerequisites

1. Python 3.7 or higher
2. pip (Python package installer)

### Steps

1. **Clone the Repository**

```sh
git clone https://github.com/chiragjoshi12/chatbot_with_ollama_and_streamlit.git
cd chatbot_with_ollama_and_streamlit
```

2. **Install Required Packages**

Create a virtual environment (optional but recommended):

```sh
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```

Install dependencies:

```sh
pip install -r requirements.txt
```

3. **Install Ollama & Load Model in Your System**

Follow the instructions in this [video by Harper Caroll to install Ollama and load models locally](https://www.youtube.com/watch?v=dOm9YWSYbbg).

## Usage

1. **Run the Streamlit App**

```sh
streamlit run app.py
```

2. **Interact with the Chatbot**

Open the provided URL in your web browser. You can start interacting with the chatbot, and it will maintain the conversation history.

## Project Structure

- `app.py`: Main application file containing the Streamlit app code.
- `requirements.txt`: A list of Python packages required to run the application.

## Acknowledgements

- Harper Caroll for the video tutorial on how to install Ollama and load models locally.
- [Streamlit](https://streamlit.io/) for providing an easy way to create web applications for machine learning and data science.
- [Ollama](https://ollama.ai/) for the language models used in the chatbot.

Readme made with 💖 using [README Generator by Chirag Joshi](https://github.com/chiragg-ai/readme-generator)