Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/choidae1/machine-deeplearing-study
Repo for learning 「혼자 공부하는 머신러닝+딥러닝」(한빛 미디어)
https://github.com/choidae1/machine-deeplearing-study
colab keras python tensorflow tensorflow-tutorials
Last synced: about 1 month ago
JSON representation
Repo for learning 「혼자 공부하는 머신러닝+딥러닝」(한빛 미디어)
- Host: GitHub
- URL: https://github.com/choidae1/machine-deeplearing-study
- Owner: ChoiDae1
- Created: 2021-11-30T10:21:07.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2021-11-30T17:53:27.000Z (about 3 years ago)
- Last Synced: 2024-12-21T06:13:21.527Z (about 1 month ago)
- Topics: colab, keras, python, tensorflow, tensorflow-tutorials
- Language: Jupyter Notebook
- Homepage:
- Size: 5.72 MB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Machine-DeepLearing_Study
By studying a book named _**'혼자 공부하는 머신러닝+딥러닝'**_, I organized what I learned about Sklearn and Tensorflow in this repository.
### Ch1.My first MachineLearning
- Concept of ML, DL
- Colab and Jupyter Notebook
### Ch2.Data handling
- train set and test set
- Data preprocessing
### Ch3.Regression and Model Reguralization
- KNeighborsRegressor [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/KNeighborsRegressor.ipynb)
- LinearRegression [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Linear%20Regression.ipynb)
- PolynomialRegression [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Polynomial%20Regression.ipynb)
- Reguralization [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Reguralization.ipynb)
### Ch4.Various Classify Algorithms
- LogisticRegression [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Logistic%20Regression.ipynb)
- Stochastic Gradient Decent [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/SGD.ipynb)
### Ch5.Tree Algorithms
- DecisionTree [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/DecisionTree.ipynb)
- Cross validate and Grid Search [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Cross%20validate%20and%20Grid%20Search.ipynb)
- Ensemble [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Ensemble.ipynb)
### Ch6.Unsupervised Learning
- Clustering Algorithms [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Clustering%20Algorithm.ipynb)
- K-Mean [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/K-Mean.ipynb)
- PCA [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/PCA.ipynb)
### Ch7.DeepLearning
- ANN [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/ANN.ipynb)
- DNN [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/DNN.ipynb)
- Training Neural Network Model [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Training%20Neural%20Network%20Model.ipynb)
### Ch8.ANN for image(CV)
- CNN [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/CNN.ipynb)
- Visualize CNN(XAI) [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Visualize%20CNN.ipynb)
### Ch9.ANN for text(NLP)
- Simple RNN [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/Simple%20RNN.ipynb)
- LSTM and GRU [code link](https://github.com/ChoiDae1/Machine-DeepLearing_Study/blob/main/LSTM_GRU.ipynb)