https://github.com/choidae1/meta-learning-study
Repo for learning 「모두를 위한 메타러닝」(위키북스)
https://github.com/choidae1/meta-learning-study
meta-learning pytorch-implementation reinforcement-learning
Last synced: 2 months ago
JSON representation
Repo for learning 「모두를 위한 메타러닝」(위키북스)
- Host: GitHub
- URL: https://github.com/choidae1/meta-learning-study
- Owner: ChoiDae1
- License: apache-2.0
- Created: 2023-01-04T06:22:55.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-02-13T07:45:46.000Z (over 2 years ago)
- Last Synced: 2025-01-17T12:17:28.848Z (4 months ago)
- Topics: meta-learning, pytorch-implementation, reinforcement-learning
- Language: Jupyter Notebook
- Homepage:
- Size: 1.74 MB
- Stars: 2
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://lgtm.com/projects/g/dongminlee94/meta-learning-for-everyone/context:python)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/downloads/release/python-388/)
[](https://pytorch.org/blog/pytorch-1.9-released/)
[](https://github.com/psf/black)
[](https://pycqa.github.io/isort/)
[](https://pypi.org/project/pytest-pylint/)[](#contributors-)
![]()
# 모두를 위한 메타러닝: PyTorch를 활용한 Few-shot 학습 모델과 빠른 강화학습 에이전트 만들기
"모두를 위한 메타러닝" 책을 읽으면서 실습을 진행한 코드 레포지토리입니다.
[원본 저장소](https://github.com/dongminlee94/meta-learning-for-everyone)0. Load-dataset code
- [Omniglot](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/load_dataset/load_omniglot_my.ipynb)
- [Sinusoid](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/load_dataset/load_sinusoid_my.ipynb)
- [Half-Cheetah](https://github.com/ChoiDae1/Meta-learning-Study/tree/main/src/meta_rl/envs)1. Meta-Supervised-learning code
- model-based
(1) [MANN](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/model-based/mann_my.ipynb) (2) [SNAIL](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/model-based/snail_my.ipynb)- optimization-based
(1) [MAML-Regression](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/opt-based/maml_regression_my.ipynb) (2) [MAML-Classification](
https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/opt-based/maml_classification_my.ipynb)- metric-based
(1) [MachingNet](https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/metric-based/matching_network_my.ipynb) (2) [PrototypicalNet](
https://github.com/ChoiDae1/Meta-learning-Study/blob/main/src/meta_sl/metric-based/prototypical_network_my.ipynb)2. Meta-Reinforce-learning code
- recurrent-policies-based
(1) [RL^2](https://github.com/ChoiDae1/Meta-learning-Study/tree/main/src/meta_rl/rl2)- optimization-based
(1) [MAML-RL](https://github.com/ChoiDae1/Meta-learning-Study/tree/main/src/meta_rl/maml)- context-based
(1) [PEARL](https://github.com/ChoiDae1/Meta-learning-Study/tree/main/src/meta_rl/pearl)