Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/choukh/agda-veblen
veblen function in agda
https://github.com/choukh/agda-veblen
agda formalization googology mathematical-logic mathematics ordinal ordinal-numbers
Last synced: about 1 month ago
JSON representation
veblen function in agda
- Host: GitHub
- URL: https://github.com/choukh/agda-veblen
- Owner: choukh
- License: agpl-3.0
- Created: 2022-10-14T12:43:47.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-06-24T12:24:13.000Z (6 months ago)
- Last Synced: 2024-06-25T13:21:12.351Z (6 months ago)
- Topics: agda, formalization, googology, mathematical-logic, mathematics, ordinal, ordinal-numbers
- Language: Agda
- Homepage:
- Size: 182 KB
- Stars: 5
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Veblen Function in Agda
## Features
- --without-K and --safe
- Ready for googology function such as fast growing hierarchy
- Literate agda script (but in Chinese) and [html5 rendering](https://choukh.github.io/agda-veblen/NonWellFormed.html)## Contents
### [Ordinal.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Ordinal.lagda.md)
- Inductive definition of Brouwer ordinal
- Inductive definition of non-strict order `_≤_`
- Equality `_≈_` and strict order `_<_` are defined by `_≤_`
- Partial ordering of `_≤_` and strict ordering of `_<_` is proved
- No total ordering, but that's fine### [WellFormed.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/WellFormed.lagda.md)
- Well formed (WF) ordinals are those constructed hereditarily by strictly increasing sequence
- WF of finite ordinals and `ω` is proved### [Function.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Function.lagda.md)
- Common properties of ordinal functions are defined
- Definition of normal function is adapted for constructive setup### [Recursion.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Recursion.lagda.md)
- General form of ordianl recursive function is defined and its properties are proved
### [Arithmetic.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Arithmetic.lagda.md)
- `_+_`, `_*_` and `_^_` are defined by recursion and their WF preserving properties are proved
- Association law, distribution law, etc### [Tetration.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Tetration.lagda.md)
- We show that tetration is no-go since `α ^^ suc ω ≈ α ^^ ω` and, moreover, `α ^^ β ≈ α ^^ ω` forall `β ≥ ω`
### [Fixpoint.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Fixpoint.lagda.md)
- Infinite iteration `_⋱_` is defined
- If `F` is normal then `F ⋱ α` is a fixed point not less than `α`
- Recursion of `F ⋱_ ∘ suc` is the fixed point yielding function of `F`, written `F ′`
- We proved that higher order function `_′` is normal-preserving and wf-preserving-preserving### [Fixpoint.Lower.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Fixpoint/Lower.lagda.md)
- Trivial examples of fixed point
### [Epsilon.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Epsilon.lagda.md)
- ε function is defined as `(ω ^_) ′`
- We have `ε (suc α) ≡ ω ^^[ suc (ε α) ] ω` forall `α`
- ζ is defined as `ε ′` and η as `ζ ′`
- `ε`, `ζ`, `η`, ... are all normal and WF preserving### [Epsilon.Alternative.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/Epsilon/Alternative.lagda.md)
- We proved `ε (suc α) ≈ ε α ^^ ω` forall WF `α`
### [VeblenFunction.lagda.md](https://github.com/choukh/agda-veblen/blob/main/src/NonWellFormed/VeblenFunction.lagda.md)
- Veblen function `φ α β` is defined
- We show that `φ` is normal, monotonic, congruence and wf-preserving
- Γ₀ is defined as `(λ α → φ α zero) ⋱ zero`There is also a well formed version of most of the above in [src/WellFormed](https://github.com/choukh/agda-veblen/blob/main/src/WellFormed). From Γ₀ on, there will be only the well formed version.
## License
[AGPL-3.0](https://github.com/choukh/agda-veblen/blob/main/LICENSE)