Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/chris-chris/pysc2-examples

StarCraft II - pysc2 Deep Reinforcement Learning Examples
https://github.com/chris-chris/pysc2-examples

ai deep-q-network deep-reinforcement-learning deepmind machine-learning reinforcement-learning startcraft2

Last synced: 3 months ago
JSON representation

StarCraft II - pysc2 Deep Reinforcement Learning Examples

Awesome Lists containing this project

README

        

# StartCraft II Reinforcement Learning Examples

This example program was built on
- pysc2 (Deepmind) [https://github.com/deepmind/pysc2]
- baselines (OpenAI) [https://github.com/openai/baselines]
- s2client-proto (Blizzard) [https://github.com/Blizzard/s2client-proto]
- Tensorflow 1.3 (Google) [https://github.com/tensorflow/tensorflow]

# Current examples

## Minimaps
- CollectMineralShards with Deep Q Network

![CollectMineralShards](https://media.giphy.com/media/UrgVK9TFfv2AE/giphy.gif "Collect Mineral")

# Quick Start Guide

## 1. Get PySC2

### PyPI

The easiest way to get PySC2 is to use pip:

```shell
$ pip install git+https://github.com/deepmind/pysc2
```

Also, you have to install `baselines` library.

```shell
$ pip install git+https://github.com/openai/baselines
```

## 2. Install StarCraft II

### Mac / Win

You have to purchase StarCraft II and install it. Or even the Starter Edition will work.

http://us.battle.net/sc2/en/legacy-of-the-void/

### Linux Packages

Follow Blizzard's [documentation](https://github.com/Blizzard/s2client-proto#downloads) to
get the linux version. By default, PySC2 expects the game to live in
`~/StarCraftII/`.

* [3.16.1](http://blzdistsc2-a.akamaihd.net/Linux/SC2.3.16.1.zip)

## 3. Download Maps

Download the [ladder maps](https://github.com/Blizzard/s2client-proto#downloads)
and the [mini games](https://github.com/deepmind/pysc2/releases/download/v1.2/mini_games.zip)
and extract them to your `StarcraftII/Maps/` directory.

## 4. Train it!

```shell
$ python train_mineral_shards.py --algorithm=a2c
```

## 5. Enjoy it!

```shell
$ python enjoy_mineral_shards.py
```

## 4-1. Train it with DQN

```shell
$ python train_mineral_shards.py --algorithm=deepq --prioritized=True --dueling=True --timesteps=2000000 --exploration_fraction=0.2
```

## 4-2. Train it with A2C(A3C)

```shell
$ python train_mineral_shards.py --algorithm=a2c --num_agents=2 --num_scripts=2 --timesteps=2000000
```

| | Description | Default | Parameter Type |
|----------------------|-------------------------------------------------|---------------------------------|----------------|
| map | Gym Environment | CollectMineralShards | string |
| log | logging type : tensorboard, stdout | tensorboard | string |
| algorithm | Currently, support 2 algorithms : deepq, a2c | a2c | string |
| timesteps | Total training steps | 2000000 | int |
| exploration_fraction | exploration fraction | 0.5 | float |
| prioritized | Whether using prioritized replay for DQN | False | boolean |
| dueling | Whether using dueling network for DQN | False | boolean |
| lr | learning rate (if 0 set random e-5 ~ e-3) | 0.0005 | float |
| num_agents | number of agents for A2C | 4 | int |
| num_scripts | number of scripted agents for A2C | 4 | int |
| nsteps | number of steps for update policy | 20 | int |