Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/christianhelle/autofaker

Python library designed to minimize the setup/arrange phase of your unit tests
https://github.com/christianhelle/autofaker

python unit-testing

Last synced: 4 days ago
JSON representation

Python library designed to minimize the setup/arrange phase of your unit tests

Awesome Lists containing this project

README

        

[![build](https://github.com/christianhelle/autofaker/actions/workflows/build-linux.yml/badge.svg)](https://github.com/christianhelle/autofaker/actions/workflows/build-linux.yml)
[![build](https://github.com/christianhelle/autofaker/actions/workflows/build-macos.yml/badge.svg)](https://github.com/christianhelle/autofaker/actions/workflows/build-macos.yml)
[![build](https://github.com/christianhelle/autofaker/actions/workflows/build-windows.yml/badge.svg)](https://github.com/christianhelle/autofaker/actions/workflows/build-windows.yml)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=christianhelle_autofaker&metric=alert_status)](https://sonarcloud.io/dashboard?id=christianhelle_autofaker)
[![PyPI](https://img.shields.io/pypi/dm/autofaker)](https://pypi.org/project/autofaker)
[![buymeacoffee](https://img.shields.io/badge/buy%20me%20a%20coffee-donate-yellow.svg)](https://www.buymeacoffee.com/christianhelle)

# AutoFaker

AutoFaker is a Python library designed to minimize the setup/arrange phase of your unit tests by removing the need to manually
write code to create anonymous variables as part of a test cases setup/arrange phase.

This library is heavily inspired by [AutoFixture](https://github.com/AutoFixture/AutoFixture) and was initially created
for simplifying how to write unit tests for ETL (Extract-Transform-Load) code running from a python library on an
Apache Spark cluster in Big Data solutions.

When writing unit tests you normally start with creating objects that represent the initial state of the test.
This phase is called the **arrange** or setup phase of the test.
In most cases, the system you want to test will force you to specify much more information than you really care about,
so you frequently end up creating objects with no influence on the test itself just simply to satisfy the compiler/interpreter

[AutoFaker](https://pypi.org/project/autofaker/) is available from PyPI and should be installed using `pip`

```
pip install autofaker
```

AutoFaker can help by creating such anonymous variables for you. Here's a simple example:

```python
import unittest
from autofaker import Autodata

class Calculator:
def add(self, number1: int, number2: int):
return number1 + number2

class CalculatorTests(unittest.TestCase):
def test_can_add_two_numbers(self):
# arrange
numbers = Autodata.create_many(int, 2)
sut = Autodata.create(Calculator)
# act
result = sut.add(numbers[0], numbers[1])
# assert
self.assertEqual(numbers[0] + numbers[1], result)
```

Since the point of this library is to simplify the **arrange** step of writing unit tests, we can use the
`@autodata` and `@fakedata` are available to explicitly state
whether to use anonymous variables or fake data and construct our system under test.
To use this you can either define the types or the arguments as function arguments to the decorator, or specify
argument annotations

```python
import unittest
from autofaker import autodata

class Calculator:
def add(self, number1: int, number2: int):
return number1 + number2

class CalculatorTests(unittest.TestCase):
@autodata(Calculator, int, int)
def test_can_add_two_numbers_using_test_arguments(self, sut, number1, number2):
result = sut.add(number1, number2)
self.assertEqual(number1 + number2, result)

@autodata()
def test_can_add_two_numbers_using_annotated_arguments(self,
sut: Calculator,
number1: int,
number2: int):
result = sut.add(number1, number2)
self.assertEqual(number1 + number2, result)
```

There are times when completely anonymous variables don't make much sense, especially in data centric scenarios.
For these use cases this library uses [Faker](https://github.com/joke2k/faker) for generating fake data. This option
is enabled by setting `use_fake_data` to `True` when calling the `Autodata.create()` function

```python
from dataclasses import dataclass
from autofaker import Autodata

@dataclass
class DataClass:
id: int
first_name: str
last_name: str
job: str

data = Autodata.create(DataClass, use_fake_data=True)

print(f'id: {data.id}')
print(f'name: {data.first_name} {data.last_name}')
print(f'job: {data.job}\n')
```

The following code above might output something like:

```
id: 8952
name: Justin Wise
job: Chief Operating Officer
```

## Supported OS and Python versions

|Windows|MacOS|Linux|
|---|---|---|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-38-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-38-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-38-linux.yml/badge.svg)|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-39-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-39-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-39-linux.yml/badge.svg)|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-310-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-310-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-310-linux.yml/badge.svg)|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-311-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-311-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-311-linux.yml/badge.svg)|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-312-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-312-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-312-linux.yml/badge.svg)|
![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-313-windows.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-313-macos.yml/badge.svg)|![](https://github.com/christianhelle/autofaker/actions/workflows/build-python-313-linux.yml/badge.svg)|

## Supported data types

Currently autofaker supports creating anonymous variables for the following data types:

Built-in types:
- int
- float
- str
- complex
- range
- bytes
- bytearray

Datetime types:
- datetime
- date

Classes:
- Simple classes
- @dataclass
- Nested classes (and recursion)
- Classes containing lists of other types
- Enum classes

Dataframes:
- Pandas dataframe

## Example usages

Create anonymous built-in types like `int`, `float`, `str` and datetime types like `datetime` and `date`

```python
print(f'anonymous string: {Autodata.create(str)}')
print(f'anonymous int: {Autodata.create(int)}')
print(f'anonymous float: {Autodata.create(float)}')
print(f'anonymous complex: {Autodata.create(complex)}')
print(f'anonymous range: {Autodata.create(range)}')
print(f'anonymous bytes: {Autodata.create(bytes)}')
print(f'anonymous bytearray: {Autodata.create(bytearray)}')
print(f'anonymous datetime: {Autodata.create(datetime)}')
print(f'anonymous date: {Autodata.create(datetime.date)}')
```

The code above might output the following

```
anonymous string: f91954f1-96df-463f-a427-665c99213395
anonymous int: 2066712686
anonymous float: 725758222.8712853
anonymous datetime: 2017-06-19 02:40:41.000084
anonymous date: 2019-11-10 00:00:00
```

Creates an anonymous class

```python

class SimpleClass:
id = -1
text = 'test'

cls = Autodata.create(SimpleClass)
print(f'id = {cls.id}')
print(f'text = {cls.text}')
```

The code above might output the following

```
id = 2020177162
text = ac54a65d-b4a3-4eda-a840-eb948ad10d5f
```

Create a collection of an anonymous class

```python
class SimpleClass:
id = -1
text = 'test'

classes = Autodata.create_many(SimpleClass)
for cls in classes:
print(f'id = {cls.id}')
print(f'text = {cls.text}')
print()
```

The code above might output the following

```
id = 242996515
text = 5bb60504-ccca-4104-9b7f-b978e52a6518

id = 836984239
text = 079df61e-a87e-4f26-8196-3f44157aabd6

id = 570703150
text = a3b86f08-c73a-4730-bde7-4bdff5360ef4
```

Creates an anonymous dataclass

```python
from dataclasses import dataclass

@dataclass
class DataClass:
id: int
text: str

cls = Autodata.create(DataClass)
print(f'id = {cls.id}')
print(f'text = {cls.text}')
```

The code above might output the following

```
id = 314075507
text = 4a3b3cae-f4cf-4502-a7f3-61115a1e0d2a
```

Creates an anonymous dataclass using fake data

```python
@dataclass
class DataClass:
id: int

name: str
address: str
job: str

country: str
currency_name: str
currency_code: str

email: str
safe_email: str
company_email: str

hostname: str
ipv4: str
ipv6: str

text: str

data = Autodata.create(DataClass, use_fake_data=True)

print(f'id: {data.id}')
print(f'name: {data.name}')
print(f'job: {data.job}\n')
print(f'address:\n{data.address}\n')

print(f'country: {data.country}')
print(f'currency name: {data.currency_name}')
print(f'currency code: {data.currency_code}\n')

print(f'email: {data.email}')
print(f'safe email: {data.safe_email}')
print(f'work email: {data.company_email}\n')

print(f'hostname: {data.hostname}')
print(f'IPv4: {data.ipv4}')
print(f'IPv6: {data.ipv6}\n')

print(f'text:\n{data.text}')
```

The code above might output the following

```
id: 8952
name: Justin Wise
job: Chief Operating Officer

address:
65939 Hernandez Parks
Rochaport, NC 41760

country: Equatorial Guinea
currency name: Burmese kyat
currency code: ERN

email: [email protected]
safe email: [email protected]
work email: [email protected]

hostname: db-90.hendricks-west.org
IPv4: 66.139.143.242
IPv6: 895d:82f7:7c13:e7cb:f35d:c93:aeb2:8eeb

text:
Movie author culture represent. Enjoy myself over physical green lead but home.
Share wind factor far minute produce significant. Sense might fact leader.
```

Create an anonymous class with nested types

```python

class NestedClass:
id = -1
text = 'test'
inner = SimpleClass()

cls = Autodata.create(NestedClass)
print(f'id = {cls.id}')
print(f'text = {cls.text}')
print(f'inner.id = {cls.inner.id}')
print(f'inner.text = {cls.inner.text}')
```

The code above might output the following

```
id = 1565737216
text = e66ecd5c-c17a-4426-b755-36dfd2082672
inner.id = 390282329
inner.text = eef94b5c-aa95-427a-a9e6-d99e2cc1ffb2
```

Create a collection of an anonymous class with nested types

```python
class NestedClass:
id = -1
text = 'test'
inner = SimpleClass()

classes = Autodata.create_many(NestedClass)
for cls in classes:
print(f'id = {cls.id}')
print(f'text = {cls.text}')
print(f'inner.id = {cls.inner.id}')
print(f'inner.text = {cls.inner.text}')
print()
```

The code above might output the following

```
id = 1116454042
text = ceeecf0c-7375-4f3a-8d4b-6d7a4f2b20fd
inner.id = 1067027444
inner.text = 079573ce-1ef4-408d-8984-1dbc7b0d0b80

id = 730390288
text = ff3ca474-a69d-4ff6-95b4-fbdb1bea7cdb
inner.id = 1632771208
inner.text = 9423e824-dc8f-4145-ba47-7301351a91f8

id = 187364960
text = b31ca191-5031-43a2-870a-7bc7c99e4110
inner.id = 1705149100
inner.text = e703a117-ba4f-4201-a31b-10ab8e54a673
```

Create a Pandas DataFrame using anonymous data generated from a specified type

```python
class DataClass:
id = -1
type = ''
value = 0

pdf = Autodata.create_pandas_dataframe(DataClass)
print(pdf)
```

The code above might output the following

```
id type value
0 778090854 13537c5a-62e7-488b-836e-a4b17f2f3ae9 1049015695
1 602015506 c043ca8d-e280-466a-8bba-ec1e0539fe28 1016359353
2 387753717 986b3b1c-abf4-4bc1-95cf-0e979390e4f3 766159839
```

Create a Pandas DataFrame using fake data generated from a specified type

```python
class DataClass:
id = -1
first_name = ''
last_name = 0
phone_number = ''

pdf = Autodata.create_pandas_dataframe(DataClass, use_fake_data=True)
print(pdf)
```

The code above might output the following

```
first_name id last_name phone_number
0 Lawrence 7670 Jimenez 001-172-307-0561x471
1 Bryan 9084 Walker (697)893-6767
2 Paul 9824 Thomas 960.555.3577x65487
```

#

For tips and tricks on software development, check out [my blog](https://christianhelle.com)

If you find this useful and feel a bit generous then feel free to [buy me a coffee ☕](https://www.buymeacoffee.com/christianhelle)