Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/christiankaiser/segnet.tf
SegNet with Tensorflow
https://github.com/christiankaiser/segnet.tf
Last synced: 3 months ago
JSON representation
SegNet with Tensorflow
- Host: GitHub
- URL: https://github.com/christiankaiser/segnet.tf
- Owner: christiankaiser
- Created: 2018-02-26T06:41:58.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-02-26T06:43:37.000Z (over 6 years ago)
- Last Synced: 2024-05-19T23:36:14.449Z (6 months ago)
- Language: Python
- Size: 12.7 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# SegNet with Tensorflow
SegNet implementation for Tensorflow with instructions to run the model on Floydhub. This implementation is based on [github.com/tkuanlun350/Tensorflow-SegNet](https://github.com/tkuanlun350/Tensorflow-SegNet).
The implementation is a slightly modified [SegNet](http://arxiv.org/abs/1511.00561) in Tensorflow trained on the CamVid dataset (see section Dataset for the details).
In this implementation the original upsampling method is replaced simply by a deconv (or conv-transpose) layer (without pooling indices), because indice unravelling is not yet unavailable in Tensorflow (see corresponding [issue](https://github.com/tensorflow/tensorflow/issues/2169)).
## Dataset
We use here the Alex Kendall's CamVid dataset originally available from the [SegNet Tutorial](https://github.com/alexgkendall/SegNet-Tutorial) and available on Floydhub ffrom [humpelandi/datasets/camvid/1](https://www.floydhub.com/humpelandi/datasets/camvid).
## Run it on Floydhub
Create the project on Floydhub:
```
floyd init segnet
```Training the network:
```
floyd run --gpu --env tensorflow-1.3 --data humpelandi/datasets/camvid/1:/CamVid 'python train.py'
```It is possible to finetune an existing model:
```
# Not yet implemented
```Testing is done with:
```
floyd run \
--gpu \
--env tensorflow-1.3 \
--data humpelandi/datasets/camvid/1:/CamVid \
--data humpelandi/projects/segnet/1/output:/model \
'python test.py'
```