Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/christimperley/fluffycow
A small and powerful DSL for generating complex random objects in Python 🐄
https://github.com/christimperley/fluffycow
compositional dsl fuzzing python testing
Last synced: 23 days ago
JSON representation
A small and powerful DSL for generating complex random objects in Python 🐄
- Host: GitHub
- URL: https://github.com/christimperley/fluffycow
- Owner: ChrisTimperley
- License: apache-2.0
- Created: 2019-03-26T20:15:54.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-06T02:06:13.000Z (almost 6 years ago)
- Last Synced: 2024-11-09T08:32:13.902Z (3 months ago)
- Topics: compositional, dsl, fuzzing, python, testing
- Language: Python
- Homepage:
- Size: 28.3 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 3
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
.. -*-restructuredtext-*-
fluffycow
=========.. image:: https://travis-ci.org/ChrisTimperley/fluffycow.svg?branch=master
:target: https://travis-ci.org/ChrisTimperley/fluffycow.. image:: https://badge.fury.io/py/fluffycow.svg
:target: https://badge.fury.io/py/fluffycow.. image:: https://img.shields.io/pypi/pyversions/fluffycow.svg
:target: https://pypi.org/project/fluffycowA simple and elegant library for generating complex random objects in Python.
.. image:: https://static.boredpanda.com/blog/wp-content/uploads/2014/03/cute-fluffy-animals-33.jpg
(image credit: `Matt Lautner `_.)
Installation
------------To install the latest release from `PyPI `_:
.. code::
$ pip install fluffycow
To install the latest development release:
.. code::
$ git clone https://github.com/ChrisTimperley/fluffycow
$ cd fluffycow
$ python setup.py installExamples
--------To generate 10 lists containing 5 random numbers:
.. code:: python
import fluffycow as g
gen = g.list(g.random(), 5)
for i in range(10):
l = next(gen)
print(l)"""
[0.8620918485892981, 0.4794836848262348, 0.262162063050416, 0.01909426938513137, 0.36506899628784006]
[0.9397902843125912, 0.9883123343094299, 0.5728170848781718, 0.2430986751635641, 0.6504376531611539]
[0.6530962809522628, 0.629805285301596, 0.7484217313556808, 0.4781887755635098, 0.7702516815623411]
[0.6049464336804768, 0.6857354552123759, 0.4401119070721792, 0.16269631684472152, 0.4501522526776762]
[0.6754685790929789, 0.14883325162091654, 0.7543575544723128, 0.7400186451945051, 0.7872586706933858]
[0.6093352430215464, 0.601878065077082, 0.9864251783225236, 0.5652106608585465, 0.2000072917817054]
[0.5288773016226057, 0.3473820645776373, 0.5181819860433858, 0.9795605815396756, 0.0941069188895195]
[0.577403816680611, 0.6006088487133505, 0.7401053882982396, 0.9243339819764703, 0.8737058738019327]
[0.15168246955860343, 0.9826794936881696, 0.8700116634339362, 0.23066589924280112, 0.6455718073363804]
[0.4953407037944514, 0.4235910957127196, 0.9817109582233142, 0.19140229868504488, 0.4238482591507997]
"""To generate 5 random cows 🐄:
.. code:: python
import fluffycow as g
import attr@attr.s
class Cow:
age = attr.ib(type=int)
fluffiness = attr.ib(type=float)# provide generators for each keyword argument,
gen = g.factory(Cow,
age=g.randint(0, 50),
fluffiness=g.gauss(5.0, 1.5))# or for each positional argument,
gen = g.factory(Cow, g.randint(0, 50), g.gauss(5.0, 1.5))# or mix positional and keyword arguments
gen = g.factory(Cow,
g.randint(0, 50),
fluffiness=g.gauss(5.0, 1.5))# generate some fluffy cows
for i in range(5):
cow = next(gen)
print(cow)"""
Cow(age=16, fluffiness=6.737730437364233)
Cow(age=30, fluffiness=3.6106200949734806)
Cow(age=4, fluffiness=5.856278892241928)
Cow(age=40, fluffiness=4.274460173984223)
Cow(age=8, fluffiness=4.26886806010291)
"""To generate a farm containing a random mixture of 10 animals:
.. code:: python
@attr.s
class Cow:
age = attr.ib(type=int)
fluffiness = attr.ib(type=float)@attr.s
class Chicken:
sass = attr.ib(type=int)@attr.s
class Sheep:
fluffiness = attr.ib(type=float)def farm():
cows = g.factory(Cow,
age=g.randint(0, 30),
fluffiness=g.gauss(5.0, 1.5))
chickens = g.object(Chicken, g.randint(0, 10))
sheep = g.object(Sheep, g.gauss(4.5, 1.0))animals = g.mux(cows, chickens, sheep)
for i in range(10):
animal = next(animals)
print(animal)"""
Cow(age=15, fluffiness=4.13522619329628)
Cow(age=6, fluffiness=6.132266751335851)
Sheep(fluffiness=4.996947740687185)
Cow(age=25, fluffiness=4.268442712380023)
Sheep(fluffiness=4.92952572321737)
Chicken(sass=5)
Cow(age=28, fluffiness=5.155204522890905)
Sheep(fluffiness=3.9241924681246094)
Sheep(fluffiness=3.676097181435127)
Sheep(fluffiness=2.713429568549102)
"""