An open API service indexing awesome lists of open source software.

https://github.com/cidm-ph/phylepic

Epidemic curve + phylogenomic tree
https://github.com/cidm-ph/phylepic

genomics genomics-visualization public-health r

Last synced: about 1 month ago
JSON representation

Epidemic curve + phylogenomic tree

Awesome Lists containing this project

README

          

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```

# phylepic

[![r-universe status](https://cidm-ph.r-universe.dev/badges/phylepic)](https://cidm-ph.r-universe.dev)
[![R-CMD-check](https://github.com/cidm-ph/phylepic/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/cidm-ph/phylepic/actions/workflows/R-CMD-check.yaml)
[![CRAN
status](https://www.r-pkg.org/badges/version/phylepic)](https://CRAN.R-project.org/package=phylepic)

Phylepic contains tools for visualisations that are useful for genomic epidemiology
of pathogens, designed for a public health setting.

## Installation

You can install phylepic like so:

``` r
# CRAN release
install.packages('phylepic')

# development version
install.packages('phylepic', repos = c('https://cidmp-ph.r-universe.dev', 'https://cloud.r-project.org'))
```

## Example

This is an example of a very minimal phylepic chart.

```{r example, fig.width=7, fig.height=4, eval = F}
library(ape)
library(phylepic)

tree <- read.tree(text = "((D:0.3,C:0.4):0.5,B:0.1,A:0.2);")
metadata <- data.frame(
ID = c("A", "B", "C", "D"),
date = as.Date(c("2024-01-10", "2024-01-12", "2024-01-21", "2024-01-23")),
country = factor(c("Australia", "Australia", NA, "New Zealand"))
)

phylepic(tree, metadata, ID, date) |> plot()
```

Refer to [the package vignette](https://cidm-ph.github.io/phylepic/articles/phylepic.html) for a more complete example.

## Citation

See `citation("phylepic")`.

Suster CJE, Watt AE, Wang Q, Chen SC, Kok J, Sintchenko V (2024).
“Combined visualization of genomic and epidemiological data for outbreaks.”
_Epidemiology & Infection_ 152: e110. [doi:10.1017/S0950268824001092](https://doi.org/10.1017/S0950268824001092),