Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/cistools/collocate

Collocate xarray trajectories in arbitrary physical dimensions
https://github.com/cistools/collocate

Last synced: 2 months ago
JSON representation

Collocate xarray trajectories in arbitrary physical dimensions

Awesome Lists containing this project

README

        

collocate
=========

[![Build Status](https://travis-ci.org/cistools/collocate.svg?branch=master)](https://travis-ci.org/cistools/collocate)

collocate un-structured xarray DataArray's (or Iris Cube's) in arbitrary physical dimensions.

For example, taking a dataset with mutli-dimensional latitude and longitude coordinates

>>> da

array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
Coordinates:
longitude (x, y) float64 -10.0 -10.0 -10.0 -5.0 -5.0 -5.0 0.0 0.0 0.0 ...
latitude (x, y) float64 -5.0 0.0 5.0 -5.0 0.0 5.0 -5.0 0.0 5.0 -5.0 ...
Dimensions without coordinates: x, y

And a set of arbitrary points

>> points

array([ 0., 0., 0.])
Coordinates:
latitude (obs) float64 0.5 5.4 12.0
longitude (obs) float64 -0.7 0.2 3.0
Dimensions without coordinates: obs

We can perform a collocation to find the mean value of the data with 500km of each sample point like so

>>> collocate(points, da, h_sep=500)


Dimensions: (obs: 3)
Coordinates:
* obs (obs) int64 0 1 2
Data variables:
latitude (obs) float64 0.5 5.4 12.0
longitude (obs) float64 -0.7 0.2 3.0
var (obs) float64 5.5 8.0 nan

**Note** this is still a prototype and the API is likely to change!

Contact
-------

[email protected]