An open API service indexing awesome lists of open source software.

https://github.com/cj-mills/cjm-kaggle-utils

Some utility functions for working with the Kaggle API.
https://github.com/cj-mills/cjm-kaggle-utils

Last synced: about 1 month ago
JSON representation

Some utility functions for working with the Kaggle API.

Awesome Lists containing this project

README

          

cjm-kaggle-utils
================

## Install

``` sh
pip install cjm_kaggle_utils
```

## How to use

### save_kaggle_creds

``` python
from cjm_kaggle_utils.core import save_kaggle_creds
```

``` python
username = "name"
key = "12345"
save_kaggle_creds(username, key, overwrite=False)
```

Credentials already present. Set `overwrite=True` to replace them.

### dl_kaggle

``` python
from cjm_kaggle_utils.core import dl_kaggle
from pathlib import Path
```

``` python
# Get the path to the directory where datasets are stored
dataset_dir = Path("./Datasets/")
dataset_dir.mkdir(parents=True, exist_ok=True)
print(f"Dataset Directory: {dataset_dir}")

# Create the path to the data directory
archive_dir = dataset_dir/'../Archive'
archive_dir.mkdir(parents=True, exist_ok=True)
print(f"Archive Directory: {archive_dir}")
```

Dataset Directory: Datasets
Archive Directory: Datasets/../Archive

``` python
# Set the name of the dataset
dataset_name = 'style-image-samples'

# Construct the Kaggle dataset name by combining the username and dataset name
kaggle_dataset = f'innominate817/{dataset_name}'
```

``` python
# Create the path to the zip file that contains the dataset
archive_path = Path(f'{archive_dir}/{dataset_name}.zip')
print(f"Archive Path: {archive_path}")

# Create the path to the directory where the dataset will be extracted
dataset_path = Path(f'{dataset_dir}/{dataset_name}')
print(f"Dataset Path: {dataset_path}")
```

Archive Path: Datasets/../Archive/style-image-samples.zip
Dataset Path: Datasets/style-image-samples

``` python
dl_kaggle(kaggle_dataset, archive_path, dataset_path)
```

Downloading style-image-samples.zip to Datasets/../Archive

100%|██████████████████████████████████████████████████████████████████████████████████████████████| 16.2M/16.2M [00:00<00:00, 44.0MB/s]

``` python
!ls {dataset_path}
```

images