Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/clap-purdue/gricean-pragmatics
https://clap-purdue.github.io/gricean-pragmatics/
https://github.com/clap-purdue/gricean-pragmatics
benchmark evaluation large-language-models linguistic-competence llama multilingual pragmatics
Last synced: about 1 month ago
JSON representation
https://clap-purdue.github.io/gricean-pragmatics/
- Host: GitHub
- URL: https://github.com/clap-purdue/gricean-pragmatics
- Owner: clap-purdue
- License: apache-2.0
- Created: 2024-09-05T01:32:11.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-09-24T12:25:13.000Z (about 2 months ago)
- Last Synced: 2024-10-06T18:41:45.104Z (about 1 month ago)
- Topics: benchmark, evaluation, large-language-models, linguistic-competence, llama, multilingual, pragmatics
- Language: Python
- Homepage:
- Size: 2.7 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# gricean-pragmatics
A library of five metrics evaluating large language models' pragmatic competence:
1. **Naturalness**: LLMs will generate surprisal scores as a proxy to text naturalness for each sentence in a minimal pair, which reflect how unexpected a sentence is, given the preceding context. Hypothetically, if LLMs show pragmatic sensitivity, LLMs should assign a lower surprisal score to the intended implied meaning in an appropriate context.
2. **Sensitivity to different Shades of Meaning (SSM)**
3. **Pragmatic Reasoning Chains (PRC)**
4. **Implicature Recovery Rate (IRR)**
5. **Pragmatic Sensitivity Index (PSI)**Benchmark datasets (work-in-progress), examples, and documentation are also provided.