Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cloud-cv/grad-cam
:rainbow: :camera: Gradient-weighted Class Activation Mapping (Grad-CAM) Demo
https://github.com/cloud-cv/grad-cam
cnn deep-learning demo grad-cam machine-learning torch
Last synced: 17 days ago
JSON representation
:rainbow: :camera: Gradient-weighted Class Activation Mapping (Grad-CAM) Demo
- Host: GitHub
- URL: https://github.com/cloud-cv/grad-cam
- Owner: Cloud-CV
- Created: 2016-07-15T09:20:25.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-08-13T18:49:48.000Z (over 6 years ago)
- Last Synced: 2024-11-09T10:41:42.639Z (2 months ago)
- Topics: cnn, deep-learning, demo, grad-cam, machine-learning, torch
- Language: HTML
- Homepage: http://gradcam.cloudcv.org/
- Size: 5.72 MB
- Stars: 109
- Watchers: 8
- Forks: 26
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Grad-CAM: Gradient-weighted Class Activation Mapping
[![Join the chat at https://gitter.im/Cloud-CV/Grad-CAM](https://badges.gitter.im/Cloud-CV/Grad-CAM.svg)](https://gitter.im/Cloud-CV/Grad-CAM?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Grad-CAM uses the class-specific gradient information flowing into the final convolutional layer of a CNN to produce a coarse localization map of the important regions in the image. It is a novel technique for making CNN more 'transparent' by producing **visual explanations** i.e visualizations showing what evidence in the image supports a prediction. You can play with Grad-CAM demonstrations at the following links:
**Arxiv Paper Link**: https://arxiv.org/abs/1610.02391
### Grad-CAM VQA Demo: http://gradcam.cloudcv.org/vqa
![Imgur](http://i.imgur.com/6jB4lAq.gif)
### Grad-CAM Classification Demo: http://gradcam.cloudcv.org/classification
![Imgur](http://i.imgur.com/a1IiQg4.gif)
### Grad-CAM Captioning Demo: http://gradcam.cloudcv.org/captioning
![Imgur](http://i.imgur.com/BsOOpIn.gif)
## Installing / Getting started
We use RabbitMQ to queue the submitted jobs. Also, we use Redis as backend for realtime communication using websockets.
All the instructions for setting Grad-CAM from scratch can be found [here](https://github.com/Cloud-CV/Grad-CAM/blob/master/INSTALLATION.md)
Note: For best results, its recommended to run the Grad-CAM demo on GPU enabled machines.
## Interested in Contributing?
Cloud-CV always welcomes new contributors to learn the new cutting edge technologies. If you'd like to contribute, please fork the repository and use a feature branch. Pull requests are warmly welcome.
if you have more questions about the project, then you can talk to us on our [Gitter Channel](https://gitter.im/Cloud-CV/Grad-CAM).
## Acknowledgements
- [VQA_LSTM_CNN](https://github.com/VT-vision-lab/VQA_LSTM_CNN)
- [HieCoAttenVQA](https://github.com/jiasenlu/HieCoAttenVQA)
- [NeuralTalk2](https://github.com/karpathy/neuraltalk2/)
- [PyTorch](https://github.com/hughperkins/pytorch)