https://github.com/cloudwerx-dev/gpt-image-1-mcp
A Model Context Protocol (MCP) server for generating and editing images using the OpenAI gpt-image-1 model.
https://github.com/cloudwerx-dev/gpt-image-1-mcp
generation gpt-image-1 image mcp mcp-server openai
Last synced: 2 months ago
JSON representation
A Model Context Protocol (MCP) server for generating and editing images using the OpenAI gpt-image-1 model.
- Host: GitHub
- URL: https://github.com/cloudwerx-dev/gpt-image-1-mcp
- Owner: CLOUDWERX-DEV
- License: mit
- Created: 2025-05-07T05:32:30.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2025-05-07T06:43:03.000Z (5 months ago)
- Last Synced: 2025-06-17T13:20:03.579Z (4 months ago)
- Topics: generation, gpt-image-1, image, mcp, mcp-server, openai
- Language: JavaScript
- Homepage: http://cloudwerx.dev
- Size: 2.98 MB
- Stars: 10
- Watchers: 1
- Forks: 4
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
@cloudwerxlab/gpt-image-1-mcp
A Model Context Protocol (MCP) server for generating and editing images using the OpenAIgpt-image-1
model.
![]()
![]()
## 🚀 Quick Start
Run this MCP server directly using NPX without installing it. View on npm.
```bash
npx -y @cloudwerxlab/gpt-image-1-mcp
```The
-y
flag automatically answers "yes" to any prompts that might appear during the installation process.### 📋 Prerequisites
![]()
Node.js (v14 or higher)
![]()
OpenAI API key with access to gpt-image-1
### 🔑 Environment Variables
Variable
Required
Description
OPENAI_API_KEY
✅ Yes
Your OpenAI API key with access to the gpt-image-1 model
GPT_IMAGE_OUTPUT_DIR
❌ No
Custom directory for saving generated images (defaults to user's Pictures folder undergpt-image-1
subfolder)
### 💻 Example Usage with NPX
Operating System
Command Line Example
Linux/macOS
```bash
# Set your OpenAI API key
export OPENAI_API_KEY=sk-your-openai-api-key# Optional: Set custom output directory
export GPT_IMAGE_OUTPUT_DIR=/home/username/Pictures/ai-generated-images# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
```
Windows (PowerShell)
```powershell
# Set your OpenAI API key
$env:OPENAI_API_KEY = "sk-your-openai-api-key"# Optional: Set custom output directory
$env:GPT_IMAGE_OUTPUT_DIR = "C:\Users\username\Pictures\ai-generated-images"# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
```
Windows (Command Prompt)
```cmd
:: Set your OpenAI API key
set OPENAI_API_KEY=sk-your-openai-api-key:: Optional: Set custom output directory
set GPT_IMAGE_OUTPUT_DIR=C:\Users\username\Pictures\ai-generated-images:: Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
```
## 🔌 Integration with MCP Clients
![]()
![]()
![]()
![]()
![]()
### 🛠️ Setting Up in an MCP Client
Step 1: Locate Settings File
- For Roo:
c:\Users\<username>\AppData\Roaming\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\mcp_settings.json
- For VS Code MCP Extension: Check your extension documentation for the settings file location
- For Cursor:
~/.config/cursor/mcp_settings.json
(Linux/macOS) or%APPDATA%\Cursor\mcp_settings.json
(Windows) - For Augment:
~/.config/augment/mcp_settings.json
(Linux/macOS) or%APPDATA%\Augment\mcp_settings.json
(Windows) - For Windsurf:
~/.config/windsurf/mcp_settings.json
(Linux/macOS) or%APPDATA%\Windsurf\mcp_settings.json
(Windows)
Step 2: Add Configuration
Add the following configuration to the mcpServers
object:
```json
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": [
"-y",
"@cloudwerxlab/gpt-image-1-mcp"
],
"env": {
"OPENAI_API_KEY": "PASTE YOUR OPEN-AI KEY HERE",
"GPT_IMAGE_OUTPUT_DIR": "OPTIONAL: PATH TO SAVE GENERATED IMAGES"
}
}
}
}
```
#### Example Configurations for Different Operating Systems
Operating System
Example Configuration
Windows
```json
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "C:\\Users\\username\\Pictures\\ai-generated-images"
}
}
}
}
```
Linux/macOS
```json
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "/home/username/Pictures/ai-generated-images"
}
}
}
}
```
> **Note**: For Windows paths, use double backslashes (`\\`) to escape the backslash character in JSON. For Linux/macOS, use forward slashes (`/`).
## ✨ Features
🎨 Core Tools
-
create_image
: Generate new images from text prompts -
create_image_edit
: Edit existing images with text prompts and masks
🚀 Key Benefits
- Simple integration with MCP clients
- Full access to OpenAI's gpt-image-1 capabilities
- Streamlined workflow for AI image generation
### 💡 Enhanced Capabilities
📊 Output & Formatting
- ✅ Beautifully Formatted Output: Responses include emojis and detailed information
- ✅ Automatic Image Saving: All generated images saved to disk for easy access
- ✅ Detailed Token Usage: View token consumption for each request
⚙️ Configuration & Handling
- ✅ Configurable Output Directory: Customize where images are saved
- ✅ File Path Support: Edit images using file paths instead of base64 encoding
- ✅ Comprehensive Error Handling: Detailed error reporting with specific error codes, descriptions, and troubleshooting suggestions
## 🔄 How It Works
🖼️ Image Generation
✏️ Image Editing
- Server receives prompt and parameters
- Calls OpenAI API using gpt-image-1 model
- API returns base64-encoded images
- Server saves images to configured directory
- Returns formatted response with paths and metadata
- Server receives image, prompt, and optional mask
- For file paths, reads and prepares files for API
- Uses direct curl command for proper MIME handling
- API returns base64-encoded edited images
- Server saves images to configured directory
- Returns formatted response with paths and metadata
### 📁 Output Directory Behavior
📂 Storage Location
- 🔹 Default Location: User's Pictures folder under
gpt-image-1
subfolder (e.g.,C:\Users\username\Pictures\gpt-image-1
on Windows) - 🔹 Custom Location: Set via
GPT_IMAGE_OUTPUT_DIR
environment variable - 🔹 Fallback Location:
./generated-images
(if Pictures folder can't be determined)
🗂️ File Management
- 🔹 Directory Creation: Automatically creates output directory if it doesn't exist
- 🔹 File Naming: Images saved with timestamped filenames (e.g.,
image-2023-05-05T12-34-56-789Z.png
) - 🔹 Cross-Platform: Works on Windows, macOS, and Linux with appropriate Pictures folder detection
## Installation & Usage
### NPM Package
This package is available on npm: [@cloudwerxlab/gpt-image-1-mcp](https://www.npmjs.com/package/@cloudwerxlab/gpt-image-1-mcp)
You can install it globally:
```bash
npm install -g @cloudwerxlab/gpt-image-1-mcp
```
Or run it directly with npx as shown in the Quick Start section.
### Tool: `create_image`
Generates a new image based on a text prompt.
#### Parameters
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| `prompt` | string | Yes | The text description of the image to generate (max 32,000 chars) |
| `size` | string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
| `quality` | string | No | Image quality: "high" (default), "medium", or "low" |
| `n` | integer | No | Number of images to generate (1-10, default: 1) |
| `background` | string | No | Background style: "transparent", "opaque", or "auto" (default) |
| `output_format` | string | No | Output format: "png" (default), "jpeg", or "webp" |
| `output_compression` | integer | No | Compression level (0-100, default: 0) |
| `user` | string | No | User identifier for OpenAI usage tracking |
| `moderation` | string | No | Moderation level: "low" or "auto" (default) |
#### Example
```xml
gpt-image-1
create_image
{
"prompt": "A futuristic city skyline at sunset, digital art",
"size": "1024x1024",
"quality": "high",
"n": 1,
"background": "auto"
}
```
#### Response
The tool returns:
- A formatted text message with details about the generated image(s)
- The image(s) as base64-encoded data
- Metadata including token usage and file paths
### Tool: `create_image_edit`
Edits an existing image based on a text prompt and optional mask.
#### Parameters
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| `image` | string, object, or array | Yes | The image(s) to edit (base64 string or file path object) |
| `prompt` | string | Yes | The text description of the desired edit (max 32,000 chars) |
| `mask` | string or object | No | The mask that defines areas to edit (base64 string or file path object) |
| `size` | string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
| `quality` | string | No | Image quality: "high" (default), "medium", or "low" |
| `n` | integer | No | Number of images to generate (1-10, default: 1) |
| `background` | string | No | Background style: "transparent", "opaque", or "auto" (default) |
| `user` | string | No | User identifier for OpenAI usage tracking |
#### Example with Base64 Encoded Image
```xml
gpt-image-1
create_image_edit
{
"image": "BASE64_ENCODED_IMAGE_STRING",
"prompt": "Add a small robot in the corner",
"mask": "BASE64_ENCODED_MASK_STRING",
"quality": "high"
}
```
#### Example with File Path
```xml
gpt-image-1
create_image_edit
{
"image": {
"filePath": "C:/path/to/your/image.png"
},
"prompt": "Add a small robot in the corner",
"mask": {
"filePath": "C:/path/to/your/mask.png"
},
"quality": "high"
}
```
#### Response
The tool returns:
- A formatted text message with details about the edited image(s)
- The edited image(s) as base64-encoded data
- Metadata including token usage and file paths
## 🔧 Troubleshooting
### 🚨 Common Issues
Issue
Solution
🖼️ MIME Type Errors
Errors related to image format or MIME type handling
Ensure image files have the correct extension (.png, .jpg, etc.) that matches their actual format. The server uses file extensions to determine MIME types.
🔑 API Key Issues
Authentication errors with OpenAI API
Verify your OpenAI API key is correct and has access to the gpt-image-1 model. Check for any spaces or special characters that might have been accidentally included.
🛠️ Build Errors
Issues when building from source
Ensure you have the correct TypeScript version installed (v5.3.3 or compatible) and that your tsconfig.json
is properly configured. Run npm install
to ensure all dependencies are installed.
📁 Output Directory Issues
Problems with saving generated images
Check if the process has write permissions to the configured output directory. Try using an absolute path for GPT_IMAGE_OUTPUT_DIR
if relative paths aren't working.
### 🔍 Error Handling and Reporting
The MCP server includes comprehensive error handling that provides detailed information when something goes wrong. When an error occurs:
1. **Error Format**: All errors are returned with:
- A clear error message describing what went wrong
- The specific error code or type
- Additional context about the error when available
2. **AI Assistant Behavior**: When using this MCP server with AI assistants:
- The AI will always report the full error message to help with troubleshooting
- The AI will explain the likely cause of the error in plain language
- The AI will suggest specific steps to resolve the issue
## 📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
License Summary
The MIT License is a permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.
You are free to:
- Use the software commercially
- Modify the software
- Distribute the software
- Use and modify the software privately
Under the following terms:
- Include the original copyright notice and the license notice in all copies or substantial uses of the work
Limitations:
- The authors provide no warranty with the software and are not liable for any damages
## 🙏 Acknowledgments