Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/codelionx/periodicity-detection
Detect dominant periodicity in equidistant time series
https://github.com/codelionx/periodicity-detection
autoperiod frequency-analysis periodicity periodicity-analysis timeseries timeseries-analysis
Last synced: 3 days ago
JSON representation
Detect dominant periodicity in equidistant time series
- Host: GitHub
- URL: https://github.com/codelionx/periodicity-detection
- Owner: CodeLionX
- License: mit
- Created: 2023-07-19T07:10:36.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-24T08:07:01.000Z (about 1 month ago)
- Last Synced: 2024-10-04T15:49:15.869Z (about 1 month ago)
- Topics: autoperiod, frequency-analysis, periodicity, periodicity-analysis, timeseries, timeseries-analysis
- Language: Python
- Homepage: https://periodicity-detection.readthedocs.io
- Size: 129 KB
- Stars: 19
- Watchers: 2
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Periodicity Detection
Detect the dominant period in univariate, equidistant time series data.[![CI](https://github.com/CodeLionX/periodicity-detection/actions/workflows/build.yml/badge.svg)](https://github.com/CodeLionX/periodicity-detection/actions/workflows/build.yml)
[![Documentation Status](https://readthedocs.org/projects/periodicity-detection/badge/?version=latest)](https://periodicity-detection.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/CodeLionX/periodicity-detection/branch/main/graph/badge.svg?token=6QXOCY4TS2)](https://codecov.io/gh/CodeLionX/periodicity-detection)
[![PyPI package](https://badge.fury.io/py/periodicity-detection.svg)](https://badge.fury.io/py/periodicity-detection)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![python version 3.7|3.8|3.9|3.10|3.11](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)
[![Downloads](https://static.pepy.tech/badge/periodicity-detection)](https://pepy.tech/project/periodicity-detection)---
Toolbox for detecting the dominant period in univariate, equidistant time series data.
The toolbox contains the following methods:- Autocorrelation
- AutoPeriod
- Fast Fourier Transform (FFT)
- `find_length`
- Python-adaption of the R package `forecast`'s `findfrequency` function
- Number of Peaks-method📖 Periodicity Detection's documentation is hosted at https://periodicity-detection.readthedocs.io.
Recommended reading: [Window Size Selection In Unsupervised Time Series Analytics: A Review and Benchmark](https://project.inria.fr/aaltd22/files/2022/08/AALTD22_paper_3876.pdf):
Workshop paper that compares the _Autocorrelation_, _FFT_ (_DFT_ in the paper), and _AutoPeriod_ methods to three other methods ([Code](https://github.com/ermshaua/window-size-selection)).# Installation
You can install Periodicity Detection as a package or from source.
## Prerequisites
- python >= 3.7, <= 3.11
- pip >= 20## Installation using `pip` (recommended)
```shell
pip install periodicity-detection
```## Installation from source
```shell
git clone [email protected]:CodeLionX/periodicity-detection.git
cd periodicity-detection
pip install .
```## Usage
Periodicity Detection can be used as a Python library or as a command line tool.
Please refer to the [package documentation](https://periodicity-detection.readthedocs.io) for more information.### API
```python
import numpy as np
import periodicity_detection as pyd# Create sample data
data = np.sin(np.linspace(0, 40 * np.pi, 1000)) + np.random.default_rng(42).random(1000)# Calculate period size using a specific method
period_size = pyd.findfrequency(data, detrend=True)
assert period_size == 50# Calculate period size using the default method
period_size = pyd.estimate_periodicity(data)
assert period_size == 50
```Plot of the example dataset:
![Example dataset](./example-data.png)
### CLI
```shell
$> periodicity --help
usage: periodicity [-h] [--version] [--use-initial-n USE_INITIAL_N]
[--channel CHANNEL]
dataset_path
{find-length,number-peaks,autocorrelation,fft,autoperiod,findfrequency}
...Detect the dominant period in univariate, equidistant time series data.
positional arguments:
dataset_path Path to the dataset for which the dominant period size
should be estimated.
{find-length,number-peaks,autocorrelation,fft,autoperiod,findfrequency}
find-length Determine period size based on ACF as in the TSB-UAD
repository.
number-peaks Calculates the number of peaks of at least support n
in the time series and the time series length divided
by the number of peaks defines the period size.
autocorrelation Determine period size based on ACF.
fft Determine period size based on FFT.
autoperiod AUTOPERIOD method calculates the period size in a two-
step process. First, it extracts candidate periods
from the periodogram. Then, it uses the circular
autocorrelation to validate the candidate periods.
findfrequency Determine period size using the method findfrequency
from the R forecast package. Re-implementation!optional arguments:
-h, --help show this help message and exit
--version Show version number.
--use-initial-n USE_INITIAL_N
Only use the n initial points of the dataset to
calculate the estimated period size.
--channel CHANNEL If the dataset is multivariate, use the channel on
this integer position. The first dimension is always
assumed to be the index and skipped over!```