https://github.com/coder5omkar/telecom-churn-case-study
https://github.com/coder5omkar/telecom-churn-case-study
Last synced: 11 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/coder5omkar/telecom-churn-case-study
- Owner: coder5omkar
- Created: 2025-03-11T06:00:49.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2025-03-11T06:03:58.000Z (11 months ago)
- Last Synced: 2025-03-11T07:19:34.372Z (11 months ago)
- Language: Jupyter Notebook
- Size: 446 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ๐ถ๐ฑ Telecom Churn Case Study ๐ญ๐ฎ
## ๐ค Problem Statement ๐ญ
## ๐ Business Buzz ๐
๐ก In the **telecom battlefield**, users ๐โโ๏ธ between providers! With **15-25% churn** ๐, it's **pricier** to gain than retain ๐คฏ. Keeping high-value ๐ customers = **priority #1** ๐!
๐ **Mission:** Predict & prevent **churn** ๐ฎ before it's too late โณ! Letโs **decode** ๐ customer signals ๐ง & **forecast exits** โณ!
## ๐ What is Churn? โ๐ด
๐ฒ **Prepaid vs Postpaid** ๐ฐ: In **postpaid**, ๐ฉ cancellation = clear **churn**. In **prepaid**, users **vanish** like ghosts ๐ป! Hard to tellโtrip? ๐คทโโ๏ธ Or **churned?** โ
๐ **Prepaid is king** ๐ in **India & SEA** ๐, making **churn prediction** a BIG deal! ๐ฏ
## ๐ Spotting Churn ๐ก
**๐ฐ Revenue Churn:** Users **spending < โน4**? ๐ง Might be churn! But some folks **only receive calls** ๐โnot true churn โ
**๐ต Usage Churn:** No ๐, no ๐ก, no ๐ฒ? **Silent exit!** ๐ถ๐ช But if we wait **too long**, they've **already left!** ๐โโ๏ธ๐จ
โ
**Weโll use:** **Usage-based churn** โ
## ๐ High-Value Churn ๐จ
๐ค **Top 20% users = 80% of revenue** ๐ฐ! Losing them = ๐จ **major loss** ๐จ
๐ฏ **Target:** **High-value users!** Weโll **define, track, and protect** these ๐ customers!
## ๐ฌ Data Dive ๐ต๏ธโโ๏ธ
๐ **4 months of customer footprints** ๐๏ธ (June-Sept = **6๏ธโฃ 7๏ธโฃ 8๏ธโฃ 9๏ธโฃ**)
๐ฏ **Goal:** Predict **Month 9 churn** from **Months 6-8**! ๐ง **Spot unhappy signs early!**
## ๐ฅ The Churn Timeline โณ
๐ **Good Phase** ๐: Allโs well! ๐ต No worries! ๐
โ ๏ธ **Action Phase** ๐คจ: Users start **thinking** about leaving ๐ช (bad service? competitor offer? ๐ค)
โ **Churn Phase** ๐จ: **Poof! Theyโre gone!** ๐ป Data gets cut OFF ๐ช for predictions!
โ
**Plan:** First 2 months = ๐ Happy, Month 3 = ๐ด Danger, Month 4 = โ Churn!
## ๐ The Data Bible ๐
๐ **Dataset:** [Get it here!](https://drive.google.com/file/d/1SWnADIda31mVFevFcfkGtcgBHTKKI94J/view) ๐
๐ **Dictionary Guide:** Decode ๐ terms like **loc, IC, OG, T2T, RECH** ๐ค
## ๐ ๏ธ Data Surgery ๐ฅ
๐ **Feature Crafting** ๐ญ: Smart tweaks ๐ = Better Predictions ๐ง ๐ก
๐ฐ **High-Value Filter** ๐ฏ: **Users spending โฅ X (top 30%)** = VIP ๐
โ **Tagging Churn** ๐ท๏ธ: No ๐, no ๐ก, no ๐ฒ in **Month 9**? ๐ช **Tag as churn!** โ
## ๐ค Predicting Churn ๐ฎ
๐ **The ML Magic** ๐งโโ๏ธ
๐ ๏ธ **Steps:**
1๏ธโฃ Preprocess ๐จ (fix missing values, formats ๐ ๏ธ)
2๏ธโฃ Explore ๐ (find juicy insights! ๐)
3๏ธโฃ Engineer ๐ (new power features! ๐ก)
4๏ธโฃ Shrink ๐ (use **PCA** to clean clutter ๐)
5๏ธโฃ Train ๐ค (try models! ๐ handle **class imbalance** ๐ญ)
6๏ธโฃ Evaluate ๐ง (**focus on churners!** ๐ precision matters!)
7๏ธโฃ Pick the **winning model** ๐
๐ฏ **Two Goals:**
1๏ธโฃ **Who will churn?** ๐ (Predict exits before they happen!)
2๏ธโฃ **Why do they churn?** ๐ง (Find the **red flags** ๐ฉ & fix!)
๐ **Extra Trick:** Use **Logistic Regression** ๐ or **Tree Models** ๐ณ for **explainable churn reasons!**
๐ **Show churn insights visually** ๐จ: Plots ๐, Graphs ๐, & **actionable strategies!** ๐
## ๐ Action Plan ๐ฅ
โ
Predict churn before it happens! ๐ฎ
โ
Spot **why** customers leave & fix it! ๐ ๏ธ
โ
Take **smart actions** (custom offers ๐, better plans ๐, etc.)
๐ฅ **Goal = Save Customers!** ๐ช๐ก๐ก **Letโs reduce churn & boost revenue!** ๐๐