An open API service indexing awesome lists of open source software.

https://github.com/coder5omkar/telecom-churn-case-study


https://github.com/coder5omkar/telecom-churn-case-study

Last synced: 11 months ago
JSON representation

Awesome Lists containing this project

README

          

# ๐Ÿ“ถ๐Ÿ“ฑ Telecom Churn Case Study ๐ŸŽญ๐Ÿ”ฎ

## ๐Ÿค” Problem Statement ๐Ÿ’ญ

## ๐Ÿ“Š Business Buzz ๐ŸŒ

๐Ÿ“ก In the **telecom battlefield**, users ๐Ÿƒโ€โ™‚๏ธ between providers! With **15-25% churn** ๐Ÿ“‰, it's **pricier** to gain than retain ๐Ÿคฏ. Keeping high-value ๐Ÿ“ˆ customers = **priority #1** ๐Ÿš€!

๐Ÿ” **Mission:** Predict & prevent **churn** ๐Ÿ”ฎ before it's too late โณ! Letโ€™s **decode** ๐Ÿ“œ customer signals ๐Ÿง & **forecast exits** โณ!

## ๐Ÿ”„ What is Churn? โŒ๐Ÿ“ด

๐Ÿ“ฒ **Prepaid vs Postpaid** ๐Ÿ’ฐ: In **postpaid**, ๐Ÿ“ฉ cancellation = clear **churn**. In **prepaid**, users **vanish** like ghosts ๐Ÿ‘ป! Hard to tellโ€”trip? ๐Ÿคทโ€โ™‚๏ธ Or **churned?** โŒ

๐Ÿš€ **Prepaid is king** ๐Ÿ‘‘ in **India & SEA** ๐ŸŒ, making **churn prediction** a BIG deal! ๐ŸŽฏ

## ๐Ÿ” Spotting Churn ๐Ÿ“ก

**๐Ÿ’ฐ Revenue Churn:** Users **spending < โ‚น4**? ๐Ÿง Might be churn! But some folks **only receive calls** ๐Ÿ“žโ€”not true churn โŒ

**๐Ÿ“ต Usage Churn:** No ๐Ÿ“ž, no ๐Ÿ“ก, no ๐Ÿ“ฒ? **Silent exit!** ๐Ÿ˜ถ๐Ÿšช But if we wait **too long**, they've **already left!** ๐Ÿƒโ€โ™‚๏ธ๐Ÿ’จ

โœ… **Weโ€™ll use:** **Usage-based churn** โœ…

## ๐Ÿ’Ž High-Value Churn ๐Ÿšจ

๐Ÿค‘ **Top 20% users = 80% of revenue** ๐Ÿ’ฐ! Losing them = ๐Ÿšจ **major loss** ๐Ÿšจ

๐ŸŽฏ **Target:** **High-value users!** Weโ€™ll **define, track, and protect** these ๐Ÿ’Ž customers!

## ๐Ÿ”ฌ Data Dive ๐Ÿ•ต๏ธโ€โ™‚๏ธ

๐Ÿ“‚ **4 months of customer footprints** ๐Ÿ—‚๏ธ (June-Sept = **6๏ธโƒฃ 7๏ธโƒฃ 8๏ธโƒฃ 9๏ธโƒฃ**)

๐ŸŽฏ **Goal:** Predict **Month 9 churn** from **Months 6-8**! ๐Ÿง **Spot unhappy signs early!**

## ๐Ÿ”ฅ The Churn Timeline โณ

๐Ÿ’š **Good Phase** ๐Ÿ˜Š: Allโ€™s well! ๐ŸŽต No worries! ๐Ÿ˜Ž

โš ๏ธ **Action Phase** ๐Ÿคจ: Users start **thinking** about leaving ๐Ÿšช (bad service? competitor offer? ๐Ÿค”)

โŒ **Churn Phase** ๐Ÿšจ: **Poof! Theyโ€™re gone!** ๐Ÿ‘ป Data gets cut OFF ๐Ÿ”ช for predictions!

โœ… **Plan:** First 2 months = ๐Ÿ“— Happy, Month 3 = ๐Ÿ”ด Danger, Month 4 = โŒ Churn!

## ๐Ÿ“œ The Data Bible ๐Ÿ“–

๐Ÿ“‚ **Dataset:** [Get it here!](https://drive.google.com/file/d/1SWnADIda31mVFevFcfkGtcgBHTKKI94J/view) ๐Ÿ”—

๐Ÿ“– **Dictionary Guide:** Decode ๐Ÿ“š terms like **loc, IC, OG, T2T, RECH** ๐Ÿ”ค

## ๐Ÿ› ๏ธ Data Surgery ๐Ÿฅ

๐Ÿ›  **Feature Crafting** ๐ŸŽญ: Smart tweaks ๐Ÿ”„ = Better Predictions ๐Ÿง ๐Ÿ’ก

๐Ÿ’ฐ **High-Value Filter** ๐ŸŽฏ: **Users spending โ‰ฅ X (top 30%)** = VIP ๐Ÿš€

โŒ **Tagging Churn** ๐Ÿท๏ธ: No ๐Ÿ“ž, no ๐Ÿ“ก, no ๐Ÿ“ฒ in **Month 9**? ๐Ÿšช **Tag as churn!** โœ…

## ๐Ÿค– Predicting Churn ๐Ÿ”ฎ

๐Ÿš€ **The ML Magic** ๐Ÿง™โ€โ™‚๏ธ

๐Ÿ› ๏ธ **Steps:**
1๏ธโƒฃ Preprocess ๐ŸŽจ (fix missing values, formats ๐Ÿ› ๏ธ)
2๏ธโƒฃ Explore ๐Ÿ“Š (find juicy insights! ๐Ÿ‰)
3๏ธโƒฃ Engineer ๐Ÿš€ (new power features! ๐Ÿ’ก)
4๏ธโƒฃ Shrink ๐Ÿ” (use **PCA** to clean clutter ๐Ÿ“‰)
5๏ธโƒฃ Train ๐Ÿค– (try models! ๐Ÿ† handle **class imbalance** ๐ŸŽญ)
6๏ธโƒฃ Evaluate ๐Ÿง (**focus on churners!** ๐Ÿ“ precision matters!)
7๏ธโƒฃ Pick the **winning model** ๐Ÿ…

๐ŸŽฏ **Two Goals:**
1๏ธโƒฃ **Who will churn?** ๐Ÿ“‰ (Predict exits before they happen!)
2๏ธโƒฃ **Why do they churn?** ๐Ÿง (Find the **red flags** ๐Ÿšฉ & fix!)

๐Ÿ›  **Extra Trick:** Use **Logistic Regression** ๐Ÿ“Š or **Tree Models** ๐ŸŒณ for **explainable churn reasons!**

๐Ÿ“Š **Show churn insights visually** ๐ŸŽจ: Plots ๐Ÿ“‰, Graphs ๐Ÿ“Š, & **actionable strategies!** ๐Ÿš€

## ๐Ÿš€ Action Plan ๐Ÿ’ฅ

โœ… Predict churn before it happens! ๐Ÿ”ฎ
โœ… Spot **why** customers leave & fix it! ๐Ÿ› ๏ธ
โœ… Take **smart actions** (custom offers ๐ŸŽ, better plans ๐Ÿ“œ, etc.)

๐Ÿ”ฅ **Goal = Save Customers!** ๐Ÿ’ช๐Ÿ’ก๐Ÿ“ก **Letโ€™s reduce churn & boost revenue!** ๐Ÿš€๐Ÿ“ˆ