Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/collaborative-ai/multimodal-llm
https://github.com/collaborative-ai/multimodal-llm
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/collaborative-ai/multimodal-llm
- Owner: Collaborative-AI
- License: mit
- Created: 2024-05-28T05:46:36.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-06-03T07:01:42.000Z (7 months ago)
- Last Synced: 2024-06-03T09:57:51.490Z (7 months ago)
- Language: Python
- Size: 524 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# RPipe
Research Pipeline
## Requirements
See `requirements.txt`## Instructions
- Use `make.sh` to generate run script
- Use `make.py` to generate exp script
- Use `process.py` to process exp results
- Hyperparameters can be found in `config.yml` and `process_control()` in `module/hyper.py`## Examples
- Generate run script
```ruby
bash make.sh
```
- Generate run script
```ruby
python make.py --mode base
```
- Train with MNIST and linear model
```ruby
python train_model.py --control_name MNIST_linear
```
- Test with CIFAR10 and resnet18 model
```ruby
python test_model.py --control_name CIFAR10_resnet18
```
- Process exp results
```ruby
python process.py
```## Results
- Learning curves of MNIST
- Learning curves of CIFAR10
## Acknowledgements
*Enmao Diao*