An open API service indexing awesome lists of open source software.

https://github.com/comic/evalutils

evalutils helps users create extensions for grand-challenge.org
https://github.com/comic/evalutils

docker machine-learning pandas python36 scikit-learn simpleitk

Last synced: 9 days ago
JSON representation

evalutils helps users create extensions for grand-challenge.org

Awesome Lists containing this project

README

        

# evalutils

[![Build Status](https://github.com/comic/evalutils/workflows/CI/badge.svg?branch=main)](https://github.com/comic/evalutils/actions?query=workflow%3ACI+branch%3Amain)
[![PyPI version](https://badge.fury.io/py/evalutils.svg)](https://badge.fury.io/py/evalutils)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/evalutils)](https://pypi.org/project/evalutils/)
[![Documentation Status](https://img.shields.io/badge/docs-passing-4a4c4c1.svg)](https://comic.github.io/evalutils/)
[![Code style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

evalutils contains useful functions for evaluating machine learning models in the context of medical imaging.

- Free software: MIT license
- Documentation: .

## Features

- Bounding box annotations with Jaccard Index calculations
- Calculations of bootstrapped ROC curves
- Scoring for detection tasks
- Efficient calculation of confusion matrices, jaccard scores, dice scores, hausdorff distances,
absolute volume differences, and relative volume differences

## Getting Started

[evalutils](https://github.com/comic/evalutils) requires Python 3.9 or above, and can be installed from `pip`.
Please see the [Getting Started](https://comic.github.io/evalutils/usage.html) documentation for more details.