Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/community-of-python/any-llm-client

Access LLMs via lightweight unified API
https://github.com/community-of-python/any-llm-client

Last synced: 23 days ago
JSON representation

Access LLMs via lightweight unified API

Awesome Lists containing this project

README

        

# any-llm-client

A unified and lightweight asynchronous Python API for communicating with LLMs.

Supports multiple providers, including OpenAI Chat Completions API (and any OpenAI-compatible API, such as Ollama and vLLM) and YandexGPT API.

## How To Use

Before starting using any-llm-client, make sure you have it installed:

```sh
uv add any-llm-client
poetry add any-llm-client
```

### Response API

Here's a full example that uses Ollama and Qwen2.5-Coder:

```python
import asyncio

import any_llm_client

config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")

async def main() -> None:
async with any_llm_client.get_client(config) as client:
print(await client.request_llm_message("Кек, чо как вообще на нарах?"))

asyncio.run(main())
```

To use `YandexGPT`, replace the config:

```python
config = any_llm_client.YandexGPTConfig(
auth_header=os.environ["YANDEX_AUTH_HEADER"], folder_id=os.environ["YANDEX_FOLDER_ID"], model_name="yandexgpt"
)
```

### Streaming API

LLMs often take long time to respond fully. Here's an example of streaming API usage:

```python
import asyncio

import any_llm_client

config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")

async def main() -> None:
async with (
any_llm_client.get_client(config) as client,
client.stream_llm_message_chunks("Кек, чо как вообще на нарах?") as message_chunks,
):
async for chunk in message_chunks:
print(chunk, end="", flush=True)

asyncio.run(main())
```

### Passing chat history and temperature

You can pass list of messages instead of `str` as the first argument, and set `temperature`:

```python
async with (
any_llm_client.get_client(config) as client,
client.stream_llm_message_chunks(
messages=[
any_llm_client.SystemMessage("Ты — опытный ассистент"),
any_llm_client.UserMessage("Кек, чо как вообще на нарах?"),
],
temperature=1.0,
) as message_chunks,
):
...
```

### Other

#### Mock client

You can use a mock client for testing:

```python
config = any_llm_client.MockLLMConfig(
response_message=...,
stream_messages=["Hi!"],
)

async with any_llm_client.get_client(config, ...) as client:
...
```

#### Configuration with environment variables

##### Credentials

Instead of passing credentials directly, you can set corresponding environment variables:

- OpenAI: `ANY_LLM_CLIENT_OPENAI_AUTH_TOKEN`,
- YandexGPT: `ANY_LLM_CLIENT_YANDEXGPT_AUTH_HEADER`, `ANY_LLM_CLIENT_YANDEXGPT_FOLDER_ID`.

##### LLM model config (with [pydantic-settings](https://docs.pydantic.dev/latest/concepts/pydantic_settings/))

```python
import os

import pydantic_settings

import any_llm_client

class Settings(pydantic_settings.BaseSettings):
llm_model: any_llm_client.AnyLLMConfig

os.environ["LLM_MODEL"] = """{
"api_type": "openai",
"url": "http://127.0.0.1:11434/v1/chat/completions",
"model_name": "qwen2.5-coder:1.5b"
}"""
settings = Settings()

async with any_llm_client.get_client(settings.llm_model, ...) as client:
...
```

Combining with environment variables from previous section, you can keep LLM model configuration and secrets separate.

#### Using clients directly

The recommended way to get LLM client is to call `any_llm_client.get_client()`. This way you can easily swap LLM models. If you prefer, you can use `any_llm_client.OpenAIClient` or `any_llm_client.YandexGPTClient` directly:

```python
config = any_llm_client.OpenAIConfig(
url=pydantic.HttpUrl("https://api.openai.com/v1/chat/completions"),
auth_token=os.environ["OPENAI_API_KEY"],
model_name="gpt-4o-mini",
)

async with any_llm_client.OpenAIClient(config, ...) as client:
...
```

#### Errors

`any_llm_client.LLMClient.request_llm_message()` and `any_llm_client.LLMClient.stream_llm_message_chunks()` will raise `any_llm_client.LLMError` or `any_llm_client.OutOfTokensOrSymbolsError` when the LLM API responds with a failed HTTP status.

#### Timeouts, proxy & other HTTP settings

Pass custom [HTTPX](https://www.python-httpx.org) kwargs to `any_llm_client.get_client()`:

```python
import httpx

import any_llm_client

async with any_llm_client.get_client(
...,
mounts={"https://api.openai.com": httpx.AsyncHTTPTransport(proxy="http://localhost:8030")},
timeout=httpx.Timeout(None, connect=5.0),
) as client:
...
```

Default timeout is `httpx.Timeout(None, connect=5.0)` (5 seconds on connect, unlimited on read, write or pool).

#### Retries

By default, requests are retried 3 times on HTTP status errors. You can change the retry behaviour by supplying `request_retry` parameter:

```python
async with any_llm_client.get_client(..., request_retry=any_llm_client.RequestRetryConfig(attempts=5, ...)) as client:
...
```

#### Passing extra data to LLM

```python
await client.request_llm_message("Кек, чо как вообще на нарах?", extra={"best_of": 3})
```