Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/concaption/containerized-transcription-api

Containerized Transcription API using Whisper Model and FastAPI
https://github.com/concaption/containerized-transcription-api

docker fastapi openai transcription whisper

Last synced: about 1 month ago
JSON representation

Containerized Transcription API using Whisper Model and FastAPI

Awesome Lists containing this project

README

        

# Containerized Transcription API using Whisper Model and FastAPI

[![Docker](https://github.com/buildberg/containerized-transcription-api/actions/workflows/docker-publish.yml/badge.svg)](https://github.com/buildberg/containerized-transcription-api/actions/workflows/docker-publish.yml)
[![Open Source Love svg1](https://badges.frapsoft.com/os/v1/open-source.svg?v=103)](#)
[![GitHub Forks](https://img.shields.io/github/forks/buildberg/containerized-transcription-api.svg?style=social&label=Fork&maxAge=2592000)](https://github.com/buildberg/containerized-transcription-api/fork)
[![GitHub Issues](https://img.shields.io/github/issues/buildberg/containerized-transcription-api.svg?style=flat&label=Issues&maxAge=2592000)](https://github.com/buildberg/containerized-transcription-api/issues)
[![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat&label=Contributions&colorA=red&colorB=black )](#)

[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/concaption/containerized-transcription-api)

![](screenshot.png)
### Overview
This project sets up a robust web application using FastAPI. It integrates the open-source Whisper AI model for Speech-to-Text (STT) transcription, enabling accurate and efficient audio-to-text conversion. The application is containerized using Docker, ensuring consistent and efficient runtime in any environment.
### Features
* **FastAPI Backend:** A high-performance, easy-to-learn backend.
* **Whisper AI Integration:** Cutting-edge STT transcription.
* **Dockerized:** Simplified deployment, scalability, and management.
### Why this project?
Whether you want to automate your transcription tasks, enhance accessibility for your content, or explore the world of AI-powered applications, this project has you covered.
### Installation
1. Clone the repository
```
git clone https://github.com/buildberg/containerized-transcription-api
```
2. Navigate into the project folder
```
cd containerized-transcription-api
```
3. Build and run Docker container
```
make docker
```

### Usage
Convert Audio to Text
```bash
POST /whisper
```

```mermaid
graph LR
setup[make setup]
setup -->|1. Make script executable| setup.sh[setup.sh]
setup -->|2. Run script| setup.sh

install[make install]
install -->|1. Upgrade pip| pip[pip]
install -->|2. Install requirements| requirements[requirements.txt]

format[make format]
format -->|Format all code| black[Black]

lint[make lint]
lint -->|Find and lint .py files| pylint[Pylint]

precommit[make precommit]
precommit -->|1. Install pre-commit hooks| pre-commit-install[pre-commit install]
precommit -->|2. Run hooks on all files| pre-commit-run[pre-commit run]

refactor[make refactor]
refactor --> format
refactor --> precommit
refactor --> lint

push[make push]
push -->|1. Add changes| git-add[git add]
push -->|2. Commit changes| git-commit[git commit]
push -->|3. Push to repository| git-push[git push]

docker[make docker]
docker -->|1. Docker-compose build and up| docker-compose[docker-compose up -d --build]

run[make run]
run -->|1. Execute main script| main-script[python src/main.py]

```