Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/const-ae/ggquadrilateral
A quadrilateral geom for ggplot2
https://github.com/const-ae/ggquadrilateral
ggplot-extension ggplot2 polygon quadrilateral rstats
Last synced: 9 days ago
JSON representation
A quadrilateral geom for ggplot2
- Host: GitHub
- URL: https://github.com/const-ae/ggquadrilateral
- Owner: const-ae
- Created: 2019-08-28T09:01:38.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-08-28T11:14:17.000Z (over 5 years ago)
- Last Synced: 2024-11-06T14:00:51.597Z (about 2 months ago)
- Topics: ggplot-extension, ggplot2, polygon, quadrilateral, rstats
- Language: R
- Size: 86.9 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
output: github_document
---```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "70%"
)
set.seed(1)
```
# ggquadrilateral`ggquadrilateral` provides a [ggplot2](https://ggplot2.tidyverse.org/index.html) geom that can draw
arbitrary quadrilaterals in a convenient way.## Installation
You can install the latest version of ggquadrilateral from [GitHub](https://github.com/const-ae/ggquadrilateral) with:
```{r eval=FALSE}
devtools::install_github("const-ae/ggquadrilateral")
```If you don't already have devtools installed, you can get it from CRAN with `install.packages("devtools")`.
## Example
First load `ggplot2` and the `ggquadrilateral` package
```{r example}
library(ggplot2)
library(ggquadrilateral)
```The simplest example is to just define the positions of the four corners manually
```{r}
kite_df <- data.frame(
left_tip_x = 2,
left_tip_y = 7,
top_tip_x = 3,
top_tip_y = 8,
right_tip_x = 4,
right_tip_y = 7,
bottom_tip_x = 3,
bottom_tip_y = 3
)
kite_df
``````{r}
ggplot(kite_df) +
geom_quadrilateral(aes(x1=left_tip_x, y1 = left_tip_y,
x2 = top_tip_x, y2 = top_tip_y,
x3 = right_tip_x, y3 = right_tip_y,
x4 = bottom_tip_x, y4 = bottom_tip_y),
color = "black", fill = "purple", size=4) +
xlim(-2, 8) + ylim(0, 10)
```It can also be used to visualize more complex data.
We will now use it to draw the triangle mesh for
10 random points.```{r}
df <- data.frame(x=rnorm(n=10, mean=0, sd=1),
y=rnorm(n=10, mean=0, sd=1))ggplot(df, aes(x=x, y=y)) +
geom_point()```
We will use the [`tripack`](https://cran.r-project.org/web/packages/tripack/index.html) package
to calculate the Delauney triangulation.```{r}
library(tripack)
triang <- as.data.frame(triangles(tri.mesh(df)))
triang_df <- data.frame(id = seq_len(nrow(triang)),
p1x = df$x[triang$node1],
p1y = df$y[triang$node1],
p2x = df$x[triang$node2],
p2y = df$y[triang$node2],
p3x = df$x[triang$node3],
p3y = df$y[triang$node3])
head(triang_df)
```Using the `triang_df` that the coordinates for the 12 interpolating triangles we can make the plot:
```{r}
ggplot() +
geom_quadrilateral(data=triang_df,
mapping = aes(
x1 = p1x, y1 = p1y,
x2 = p2x, y2 = p2y,
x3 = p3x, y3 = p3y,
# We want triangles, so we make the
# fourth point identical to the third
x4 = p3x, y4 = p3y,
fill = as.factor(id)),
color = "black") +
geom_point(data= df, aes(x=x, y=y), size = 3)
```