Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/const-ae/proda-paper
https://github.com/const-ae/proda-paper
Last synced: 9 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/const-ae/proda-paper
- Owner: const-ae
- Created: 2019-06-03T08:50:13.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-04-30T10:56:37.000Z (over 4 years ago)
- Last Synced: 2024-11-06T14:00:49.858Z (about 2 months ago)
- Language: HTML
- Size: 66.3 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# proDA-Paper
Currently available as a preprint:
Constantin Ahlmann-Eltze and Simon Anders: *proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry*. [biorXiv 661496](http://www.biorxiv.org/content/10.1101/661496v1) (Jun 2019)
This repository contains the code to reproduce the figures for the paper describing the
[proDA](https://github.com/const-ae/proDA) R package.## Data
There are two datasets that are used for demonstration:
* Data on the phosphorylation dynamics from a study by Erik de Graaf et al.[1](#myfootnote1)
* Data studying the interaction landscape of Ubiquitin signalling by Xiaofei Zhang et al.[2](#myfootnote2)Both can be found in the `data/` folder.
## Analysis
There are three additional folders that contain R markdown notebook that were used to generate the plots
for the paper:* `approach_intuition` contains the code to give an overview of the ideas underlying `proDA`
- [Mean-variance relation](https://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/approach_intuition/mean_variance_relation.nb.html)
- [Location of missing values](https://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/approach_intuition/missing_value_location.nb.html)
- [Probabilistic dropout model](https://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/approach_intuition/probabilistic_dropout_model.nb.html)
* `compare_performance` contains the code to run `DEP`, `QPROT`, `Perseus`, `DAPAR`, `EBRCT`,
`Triqler` and `proDA` on the
de Graaf data and make the validation and comparison plots
- Null comparison on the de Graaf data set [notebook](http://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/compare_performance/null_comparison.nb.html)
- de Graaf semi-synthetic dataset performance comparison [notebook](https://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/compare_performance/compare_performance.nb.html)
* `ubiquitination` contains the code that was used to analyze the Ubiquitination data
- [Analysis notebook](https://htmlpreview.github.io/?https://github.com/const-ae/proDA-Paper/blob/master/ubiquitination/Ubiquitination_Analysis.nb.html)## Sources
1. de Graaf, E. L., Giansanti, P., Altelaar, A. F. M. & Heck, A. J. R. Single-step Enrichment by Ti4 + -IMAC and Label-free Quantitation Enables In-depth Monitoring of Phosphorylation Dynamics with High Reproducibility and Temporal Resolution . Mol. Cell. Proteomics 13, 2426–2434 (2014).
2. Zhang, X. et al. An Interaction Landscape of Ubiquitin Signaling. Mol. Cell 65, 941–955.e8 (2017).