Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/coqui-ai/tts
๐ธ๐ฌ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production
https://github.com/coqui-ai/tts
deep-learning glow-tts hifigan melgan multi-speaker-tts python pytorch speaker-encoder speaker-encodings speech speech-synthesis tacotron text-to-speech tts tts-model vocoder voice-cloning voice-conversion voice-synthesis
Last synced: 1 day ago
JSON representation
๐ธ๐ฌ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production
- Host: GitHub
- URL: https://github.com/coqui-ai/tts
- Owner: coqui-ai
- License: mpl-2.0
- Created: 2020-05-20T15:45:28.000Z (over 4 years ago)
- Default Branch: dev
- Last Pushed: 2024-08-16T12:07:14.000Z (5 months ago)
- Last Synced: 2024-10-20T10:46:47.074Z (3 months ago)
- Topics: deep-learning, glow-tts, hifigan, melgan, multi-speaker-tts, python, pytorch, speaker-encoder, speaker-encodings, speech, speech-synthesis, tacotron, text-to-speech, tts, tts-model, vocoder, voice-cloning, voice-conversion, voice-synthesis
- Language: Python
- Homepage: http://coqui.ai
- Size: 162 MB
- Stars: 34,753
- Watchers: 288
- Forks: 4,220
- Open Issues: 90
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE.txt
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
- Awesome-AITools - Github - ai/tts?style=social) | ๅ ่ดน| (็ฒพ้ๆ็ซ / ๆๅญ่ฝฌ่ฏญ้ณ)
README
## ๐ธCoqui.ai News
- ๐ฃ โTTSv2 is here with 16 languages and better performance across the board.
- ๐ฃ โTTS fine-tuning code is out. Check the [example recipes](https://github.com/coqui-ai/TTS/tree/dev/recipes/ljspeech).
- ๐ฃ โTTS can now stream with <200ms latency.
- ๐ฃ โTTS, our production TTS model that can speak 13 languages, is released [Blog Post](https://coqui.ai/blog/tts/open_xtts), [Demo](https://huggingface.co/spaces/coqui/xtts), [Docs](https://tts.readthedocs.io/en/dev/models/xtts.html)
- ๐ฃ [๐ถBark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html)
- ๐ฃ You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with ๐ธTTS.
- ๐ฃ ๐ธTTS now supports ๐ขTortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html)
##
**๐ธTTS is a library for advanced Text-to-Speech generation.**
๐ Pretrained models in +1100 languages.
๐ ๏ธ Tools for training new models and fine-tuning existing models in any language.
๐ Utilities for dataset analysis and curation.
______________________________________________________________________[![Discord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv)
[![License]()](https://opensource.org/licenses/MPL-2.0)
[![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS)
[![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md)
[![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts)
[![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440)![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg)
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg)
[![Docs]()](https://tts.readthedocs.io/en/latest/)______________________________________________________________________
## ๐ฌ Where to ask questions
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.| Type | Platforms |
| ------------------------------- | --------------------------------------- |
| ๐จ **Bug Reports** | [GitHub Issue Tracker] |
| ๐ **Feature Requests & Ideas** | [GitHub Issue Tracker] |
| ๐ฉโ๐ป **Usage Questions** | [GitHub Discussions] |
| ๐ฏ **General Discussion** | [GitHub Discussions] or [Discord] |[github issue tracker]: https://github.com/coqui-ai/tts/issues
[github discussions]: https://github.com/coqui-ai/TTS/discussions
[discord]: https://discord.gg/5eXr5seRrv
[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials## ๐ Links and Resources
| Type | Links |
| ------------------------------- | --------------------------------------- |
| ๐ผ **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/)
| ๐พ **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#installation)|
| ๐ฉโ๐ป **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)|
| ๐ **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378)
| ๐ **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)|
| ๐ฐ **Papers** | [TTS Papers](https://github.com/erogol/TTS-papers)|## ๐ฅ TTS Performance
Underlined "TTS*" and "Judy*" are **internal** ๐ธTTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices.
## Features
- High-performance Deep Learning models for Text2Speech tasks.
- Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
- Speaker Encoder to compute speaker embeddings efficiently.
- Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
- Fast and efficient model training.
- Detailed training logs on the terminal and Tensorboard.
- Support for Multi-speaker TTS.
- Efficient, flexible, lightweight but feature complete `Trainer API`.
- Released and ready-to-use models.
- Tools to curate Text2Speech datasets under```dataset_analysis```.
- Utilities to use and test your models.
- Modular (but not too much) code base enabling easy implementation of new ideas.## Model Implementations
### Spectrogram models
- Tacotron: [paper](https://arxiv.org/abs/1703.10135)
- Tacotron2: [paper](https://arxiv.org/abs/1712.05884)
- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129)
- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802)
- Align-TTS: [paper](https://arxiv.org/abs/2003.01950)
- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf)
- FastSpeech: [paper](https://arxiv.org/abs/1905.09263)
- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558)
- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557)
- Capacitron: [paper](https://arxiv.org/abs/1906.03402)
- OverFlow: [paper](https://arxiv.org/abs/2211.06892)
- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320)
- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612)### End-to-End Models
- โTTS: [blog](https://coqui.ai/blog/tts/open_xtts)
- VITS: [paper](https://arxiv.org/pdf/2106.06103)
- ๐ธ YourTTS: [paper](https://arxiv.org/abs/2112.02418)
- ๐ข Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts)
- ๐ถ Bark: [orig. repo](https://github.com/suno-ai/bark)### Attention Methods
- Guided Attention: [paper](https://arxiv.org/abs/1710.08969)
- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006)
- Graves Attention: [paper](https://arxiv.org/abs/1910.10288)
- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/)
- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf)
- Alignment Network: [paper](https://arxiv.org/abs/2108.10447)### Speaker Encoder
- GE2E: [paper](https://arxiv.org/abs/1710.10467)
- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf)### Vocoders
- MelGAN: [paper](https://arxiv.org/abs/1910.06711)
- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106)
- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480)
- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646)
- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/)
- WaveGrad: [paper](https://arxiv.org/abs/2009.00713)
- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646)
- UnivNet: [paper](https://arxiv.org/abs/2106.07889)### Voice Conversion
- FreeVC: [paper](https://arxiv.org/abs/2210.15418)You can also help us implement more models.
## Installation
๐ธTTS is tested on Ubuntu 18.04 with **python >= 3.9, < 3.12.**.If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released ๐ธTTS models, installing from PyPI is the easiest option.
```bash
pip install TTS
```If you plan to code or train models, clone ๐ธTTS and install it locally.
```bash
git clone https://github.com/coqui-ai/TTS
pip install -e .[all,dev,notebooks] # Select the relevant extras
```If you are on Ubuntu (Debian), you can also run following commands for installation.
```bash
$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
$ make install
```If you are on Windows, ๐@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system).
## Docker Image
You can also try TTS without install with the docker image.
Simply run the following command and you will be able to run TTS without installing it.```bash
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu
python3 TTS/server/server.py --list_models #To get the list of available models
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server
```You can then enjoy the TTS server [here](http://[::1]:5002/)
More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html)## Synthesizing speech by ๐ธTTS
### ๐ Python API
#### Running a multi-speaker and multi-lingual model
```python
import torch
from TTS.api import TTS# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"# List available ๐ธTTS models
print(TTS().list_models())# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)# Run TTS
# โ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
# Text to speech list of amplitude values as output
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
# Text to speech to a file
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
```#### Running a single speaker model
```python
# Init TTS with the target model name
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)# Run TTS
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)# Example voice cloning with YourTTS in English, French and Portuguese
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
tts.tts_to_file("Isso รฉ clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
```#### Example voice conversion
Converting the voice in `source_wav` to the voice of `target_wav`
```python
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
```#### Example voice cloning together with the voice conversion model.
This way, you can clone voices by using any model in ๐ธTTS.```python
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
tts.tts_with_vc_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
speaker_wav="target/speaker.wav",
file_path="output.wav"
)
```#### Example text to speech using **Fairseq models in ~1100 languages** ๐คฏ.
For Fairseq models, use the following name format: `tts_models//fairseq/vits`.
You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html)
and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).```python
# TTS with on the fly voice conversion
api = TTS("tts_models/deu/fairseq/vits")
api.tts_with_vc_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
speaker_wav="target/speaker.wav",
file_path="output.wav"
)
```### Command-line `tts`
Synthesize speech on command line.
You can either use your trained model or choose a model from the provided list.
If you don't specify any models, then it uses LJSpeech based English model.
#### Single Speaker Models
- List provided models:
```
$ tts --list_models
```- Get model info (for both tts_models and vocoder_models):
- Query by type/name:
The model_info_by_name uses the name as it from the --list_models.
```
$ tts --model_info_by_name "///"
```
For example:
```
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
```
- Query by type/idx:
The model_query_idx uses the corresponding idx from --list_models.```
$ tts --model_info_by_idx "/"
```For example:
```
$ tts --model_info_by_idx tts_models/3
```- Query info for model info by full name:
```
$ tts --model_info_by_name "///"
```- Run TTS with default models:
```
$ tts --text "Text for TTS" --out_path output/path/speech.wav
```- Run TTS and pipe out the generated TTS wav file data:
```
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
```- Run a TTS model with its default vocoder model:
```
$ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav
```For example:
```
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
```- Run with specific TTS and vocoder models from the list:
```
$ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav
```For example:
```
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
```- Run your own TTS model (Using Griffin-Lim Vocoder):
```
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
```- Run your own TTS and Vocoder models:
```
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
```#### Multi-speaker Models
- List the available speakers and choose a among them:
```
$ tts --model_name "//" --list_speaker_idxs
```- Run the multi-speaker TTS model with the target speaker ID:
```
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx
```- Run your own multi-speaker TTS model:
```
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx
```### Voice Conversion Models
```
$ tts --out_path output/path/speech.wav --model_name "//" --source_wav --target_wav
```## Directory Structure
```
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|- utils/ (common utilities.)
|- TTS
|- bin/ (folder for all the executables.)
|- train*.py (train your target model.)
|- ...
|- tts/ (text to speech models)
|- layers/ (model layer definitions)
|- models/ (model definitions)
|- utils/ (model specific utilities.)
|- speaker_encoder/ (Speaker Encoder models.)
|- (same)
|- vocoder/ (Vocoder models.)
|- (same)
```