https://github.com/corymccartan/conformalbayes
Jackknife(+) Predictive Intervals for Bayesian Models
https://github.com/corymccartan/conformalbayes
bayesian conformal-prediction prediction r
Last synced: 2 months ago
JSON representation
Jackknife(+) Predictive Intervals for Bayesian Models
- Host: GitHub
- URL: https://github.com/corymccartan/conformalbayes
- Owner: CoryMcCartan
- License: other
- Created: 2022-02-25T23:54:24.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-11-02T16:05:04.000Z (12 months ago)
- Last Synced: 2025-07-22T15:50:21.748Z (3 months ago)
- Topics: bayesian, conformal-prediction, prediction, r
- Language: R
- Homepage: https://corymccartan.github.io/conformalbayes/
- Size: 5.33 MB
- Stars: 8
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
- Changelog: NEWS.md
- License: LICENSE
Awesome Lists containing this project
README
---
output: github_document
---```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
set.seed(5118)
```[](https://CRAN.R-project.org/package=conformalbayes)
[](https://lifecycle.r-lib.org/articles/stages.html#experimental) [](https://opensource.org/licenses/MIT)
[](https://github.com/CoryMcCartan/conformalbayes/actions/workflows/R-CMD-check.yaml)**conformalbayes** provides functions to construct finite-sample calibrated
predictive intervals for Bayesian models, following the approach in
[Barber et al. (2021)](https://doi.org/10.1214/20-AOS1965).
These intervals are calculated efficiently using importance sampling for the
leave-one-out residuals.
By default, the intervals will also reflect the relative uncertainty in the
Bayesian model, using the locally-weighted conformal methods of
[Lei et al. (2018)](https://doi.org/10.1080/01621459.2017.1307116).## Installation
You can install the development version of **conformalbayes** with:
``` r
# install.packages("devtools")
devtools::install_github("CoryMcCartan/conformalbayes")
```## Example
```{r, message=F}
library(rstanarm)
library(conformalbayes)
data("Loblolly")fit_idx = sample(nrow(Loblolly), 50)
d_fit = Loblolly[fit_idx, ]
d_test = Loblolly[-fit_idx, ]# fit a simple linear regression
m = stan_glm(height ~ sqrt(age), data=d_fit,
chains=1, control=list(adapt_delta=0.999), refresh=0)# prepare conformal predictions
m = loo_conformal(m)# make predictive intervals
pred_ci = predictive_interval(m, newdata=d_test, prob=0.9)
print(head(pred_ci))# are we covering?
mean(pred_ci[, "5%"] <= d_test$height &
d_test$height <= pred_ci[, "95%"])
```Read more on the [Getting Started page](https://corymccartan.com/conformalbayes/articles/conformalbayes.html).
## Citations
Barber, R. F., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive inference with the jackknife+. *The Annals of Statistics, 49*(1), 486-507.
Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-free predictive inference for regression. *Journal of the American Statistical Association, 113*(523), 1094-1111.