https://github.com/cosanlab/nltools
Python toolbox for analyzing imaging data
https://github.com/cosanlab/nltools
fmri machine-learning multivariate neuroimaging-data python python-toolbox toolbox
Last synced: 27 days ago
JSON representation
Python toolbox for analyzing imaging data
- Host: GitHub
- URL: https://github.com/cosanlab/nltools
- Owner: cosanlab
- License: mit
- Created: 2015-01-04T21:14:36.000Z (about 11 years ago)
- Default Branch: master
- Last Pushed: 2025-07-18T07:49:31.000Z (7 months ago)
- Last Synced: 2025-10-28T11:11:18.668Z (4 months ago)
- Topics: fmri, machine-learning, multivariate, neuroimaging-data, python, python-toolbox, toolbox
- Language: Python
- Homepage: https://nltools.org
- Size: 125 MB
- Stars: 126
- Watchers: 8
- Forks: 45
- Open Issues: 79
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://pypi.org/project/nltools/)
[](https://github.com/cosanlab/nltools/actions/workflows/auto_formatting_tests_and_coverage.yml)
[](https://codecov.io/gh/cosanlab/nltools)
[](https://www.codacy.com/app/ljchang/nltools?utm_source=github.com&utm_medium=referral&utm_content=ljchang/nltools&utm_campaign=Badge_Grade)
[](https://doi.org/10.5281/zenodo.2229813)


# NLTools
Python toolbox for analyzing neuroimaging data. It is particularly useful for conducting multivariate analyses. It is originally based on Tor Wager's object oriented matlab [canlab core tools](http://wagerlab.colorado.edu/tools) and relies heavily on [nilearn](http://nilearn.github.io) and [scikit learn](http://scikit-learn.org/stable/index.html). Nltools is only compatible with Python 3.7+.
## Documentation
Documentation and tutorials are available at https://nltools.org
## Installation
1. Method 1 (stable)
```
pip install nltools
```
2. Method 2 (bleeding edge)
```
pip install git+https://github.com/cosanlab/nltools
```
3. Method 3 (for development)
```
git clone https://github.com/cosanlab/nltools
pip install -e nltools
```
## Preprocessing
Nltools has minimal routines for pre-processing data. For more complete pre-processing pipelines please see our [cosanlab_preproc](https://github.com/cosanlab/cosanlab_preproc) library built with `nipype`.