Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cosmic-heart/ai-learning-platform
AI-Learning-Platform, a LLM-RAG pipeline which behaves like a guide and able to solve doubts. Deployed on-premise IBM ppc64le architecture. vLLM for model inference & Qdrant with Langchain for RAG Pipeline. Server written in django, postgres & cassandra as the sql & nosql databases.
https://github.com/cosmic-heart/ai-learning-platform
cassandra django langchain llm postgresql ppc64le qdrant ray-distributed vllm
Last synced: 8 days ago
JSON representation
AI-Learning-Platform, a LLM-RAG pipeline which behaves like a guide and able to solve doubts. Deployed on-premise IBM ppc64le architecture. vLLM for model inference & Qdrant with Langchain for RAG Pipeline. Server written in django, postgres & cassandra as the sql & nosql databases.
- Host: GitHub
- URL: https://github.com/cosmic-heart/ai-learning-platform
- Owner: cosmic-heart
- License: cc0-1.0
- Created: 2024-01-15T06:32:31.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-23T15:53:13.000Z (8 months ago)
- Last Synced: 2025-01-19T11:30:02.912Z (21 days ago)
- Topics: cassandra, django, langchain, llm, postgresql, ppc64le, qdrant, ray-distributed, vllm
- Language: Python
- Homepage: https://megnav.com/portfolio/ai-learning-platform
- Size: 1.71 MB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# AI-Learning Platform
[![Documentation Status](https://readthedocs.org/projects/ai-learning-platform/badge/?version=latest)](https://ai-learning-platform.readthedocs.io/en/latest/?badge=latest)
[![React.js Build and Release](https://github.com/NavinKumarMNK/AI-Learning-Platform/actions/workflows/front-end-release.yml/badge.svg)](https://github.com/NavinKumarMNK/AI-Learning-Platform/actions/workflows/front-end-release.yml)# Documentation
- This project uses `mkdocs` as the documentation service
- serve the document```bash
pip install mkdocs
mkdocs serve
```